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ABSTRACT
It is now possible to allow VMs hosting HPC applications to seam-
lessly bridge distributed cloud resources and tightly-coupled super-
computing and cluster resources. However, to achieve the appli-
cation performance that the tightly-coupled resources arecapable
of, it is important that the overlay network not introduce signi�-
cant overhead relative to the native hardware, which is not the case
for current user-level tools, including our own existing VNET/U
system. In response, we describe the design, implementation, and
evaluation of a layer 2 virtual networking system that has negli-
gible latency and bandwidth overheads in 1–10 Gbps networks.
Our system, VNET/P, is directly embedded into our publicly avail-
able Palacios virtual machine monitor (VMM). VNET/P achieves
native performance on 1 Gbps Ethernet networks and very high
performance on 10 Gbps Ethernet networks and In�niBand. The
NAS benchmarks generally achieve over 95% of their native per-
formance on both 1 and 10 Gbps. These results suggest it is feasible
to extend a software-based overlay network designed for comput-
ing at wide-area scales into tightly-coupled environments.
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1. INTRODUCTION
Cloud computing in the “infrastructure as a service” (IaaS)model

has the potential to provide economical and effective on-demand
resources for high performance computing. In this model, anap-
plication is mapped into a collection of virtual machines (VMs)
that are instantiated as needed, and at the scale needed. Indeed,
for loosely-coupled applications, this concept has readily moved
from research [6, 38] to practice [33]. As we describe in Section 3,
such systems can also be adaptive, autonomically selectingappro-
priate mappings of virtual components to physical components to
maximize application performance or other objectives. However,
tightly-coupledscalable high performance computing (HPC) appli-
cations currently remain the purview of resources such as clusters
and supercomputers. We seek to extend the adaptive IaaS cloud
computing model into these regimes, allowing an application to
dynamically span both kinds of environments.

The current limitation of cloud computing systems toloosely-
coupledapplications is not due to machine virtualization limita-
tions. Current virtual machine monitors (VMMs) and other vir-
tualization mechanisms present negligible overhead for CPU and
memory intensive workloads [14, 31]. With VMM-bypass [29] or
self-virtualizing devices [35] the overhead for direct access to net-
work devices can also be made negligible.

Considerable effort has also gone into achieving low-overhead
network virtualization and traf�c segregation within an individual
data center through extensions or changes to the network hardware
layer [32, 9, 20]. While these tools strive to provide uniform perfor-
mance across a cloud data center (a critical feature for manyHPC
applications), they do not provide the same features once anappli-
cation has migrated outside the local data center, or spans multiple
data centers, or involves HPC resources. Furthermore, theylack
compatibility with the more specialized interconnects present on
most HPC systems. Beyond the need to support our envisioned
computing model across today's and tomorrow's tightly-coupled
HPC environments, we note that data center network design and
cluster/supercomputer network design seems to be converging [1,
10]. This suggests that future data centers deployed for general
purpose cloud computing will become an increasingly better�t for
tightly-coupled parallel applications, and therefore such environ-
ments could potentially also bene�t.

The current limiting factor in the adaptive cloud- and HPC-spanning
model described above for tightly-coupled applications isthe per-
formance of the virtual networking system. Current adaptive cloud
computing systems use software-based overlay networks to carry



inter-VM traf�c. For example, our VNET/U system, which is de-
scribed in more detail later, combines a simple networking ab-
straction within the VMs with location-independence, hardware-
independence, and traf�c control. Speci�cally, it exposesa layer
2 abstraction that lets the user treat his VMs as being on a simple
LAN, while allowing the VMs to be migrated seamlessly across
resources by routing their traf�c through the overlay. By control-
ling the overlay, the cloud provider or adaptation agent cancon-
trol the bandwidth and the paths between VMs over which traf�c
�ows. Such systems [42, 37] and others that expose differentab-
stractions to the VMs [47] have been under continuous research and
development for several years. Current virtual networkingsystems
have suf�ciently low overhead to effectively host loosely-coupled
scalable applications [5], but their performance is insuf�cient for
tightly-coupled applications [34].

In response to this limitation, we have designed, implemented,
and evaluated VNET/P, which shares its model and vision with
VNET/U, but is designed to achieve near-native performancein the
1 Gbps and 10 Gbps switched networks common in clusters today,
and pave the way for even faster networks, such as In�niBand,in
the future. VNET/U is presented in more detail in Section 3.

VNET/P is implemented in the context of our publicly avail-
able, open source Palacios VMM [25], which is in part designed
to support virtualized supercomputing. A detailed description of
VNET/P's design and implementation is given in Section 4. As
a part of Palacios, VNET/P is publicly available. VNET/P could
be implemented in other VMMs, and as such provides a proof-of-
concept that overlay-based virtual networking for VMs, with per-
formance overheads low enough to be inconsequential even ina
tightly-coupled computing environment, is clearly possible.

The performance evaluation of VNET/P (Section 5) shows thatit
is able to achieve native bandwidth on 1 Gbps Ethernet with a small
increase in latency, and very high bandwidth on 10 Gbps Ethernet
with a similar, small latency increase. We also demonstratein Sec-
tion 6 that VNET/P can effectively support running Ethernet-based
networked programs on non-Ethernet HPC communication device,
speci�cally In�niBand NICs. On 10 Gbps hardware, the kernel-
level VNET/P system provides on average 10 times more band-
width and 7 times less latency than the user-level VNET/U system
can.

Our contributions are as follows:

� We articulate the bene�ts of extending virtual networking for VMs
down to clusters and supercomputers with high performance
networks. These bene�ts are also applicable to data centersthat
support IaaS cloud computing.

� We describe the design and implementation of a virtual networking
system, VNET/P, that does so. The design could be applied to other
VMMs and virtual network systems.

� We evaluate VNET/P, �nding that it provides performance with
negligible overheads on 1 Gbps Ethernet networks, and manageable
overheads on 10 Gbps Ethernet networks. VNET/P generally has
little impact on performance for the NAS benchmarks.

� We describe how VNET/P also provides its abstraction on top of
In�niBand hardware, allowing guests to exploit such hardware
without any special drivers or an In�niBand stack.

Through the use of low-overhead overlay-based virtual network-
ing in high-bandwidth, low-latency environments such as current
clusters and supercomputers, and future data centers, we seek to
make it practical to use virtual networking at all times, even when
running tightly-coupled applications on such high-end environments.
This would allow us to seamlessly andpractically extend the al-
ready highly effective adaptive virtualization-based IaaS cloud com-
puting model to such environments.

2. RELATED WORK
VNET/P is related to NIC virtualization, overlays, and virtual

networks, as we describe below.
NIC virtualization: There is a wide range of work on providing

VMs with fast access to networking hardware, where no overlay
is involved. For example, VMware and Xen support either an em-
ulated register-level interface [41] or a paravirtualizedinterface to
guest operating system [30]. While purely software-based virtual-
ized network interface has high overhead, many techniques have
been proposed to support simultaneous, direct-access network I/O.
For example, some work [29, 35] has demonstrated the use of self-
virtualized network hardware that allows direct guest access, thus
provides high performance to untrusted guests. Willmann etal have
developed a software approach that also supports concurrent, direct
network access by untrusted guest operating systems [39]. In addi-
tion, VPIO [48] can be applied on network virtualization to allow
virtual passthrough I/O on non-self-virtualized hardware. In con-
trast with such work, VNET/P provides fast access to an overlay
network, which includes encapsulation and routing.

Overlay networks: Overlay networks implement extended net-
work functionality on top of physical infrastructure, for example
to provide resilient routing (e.g, [2]), multicast (e.g. [13]), and dis-
tributed data structures (e.g., [40]) without any cooperation from
the network core; overlay networks use end-systems to provide
their functionality. VNET is an example of a speci�c class ofover-
lay networks, namely virtual networks, discussed next.

Virtual networking: Virtual networking systems provide a ser-
vice model that is compatible with an existing layer 2 or 3 net-
working standard. Examples include VIOLIN [17], ViNe [45],
VINI [3], SoftUDC VNET [19], OCALA [18] and WoW [8]. Like
VNET, VIOLIN, SoftUDC, and WoW are speci�cally designed for
use with virtual machines. Of these, VIOLIN is closest to VNET
(and contemporaneous with VNET/U), in that it allows for thedy-
namic setup of an arbitrary private layer 2 and layer 3 virtual net-
work among VMs. The key contribution of VNET/P is to show
that this model can be made to work with minimal overhead even
in extremely low latency, high bandwidth environments.

Connections:VNET/P could itself leverage some of the related
work described above. For example, effective NIC virtualization
might allow us to push encapsulation directly into the guest, or to
accelerate encapsulation via a split scatter/gather map. Mapping
unencapsulated links to VLANs would enhance performance on
environments that support them. There are many options for im-
plementing virtual networking and the appropriate choice depends
on the hardware and network policies of the target environment. In
VNET/P, we make the choice of minimizing these dependencies.

3. VNET MODEL AND VNET/U
The VNET model was originally designed to support adaptive

computing on distributed virtualized computing resourceswithin
the Virtuoso system [4], and in particular to support the adaptive
execution of a distributed or parallel computation executing in a
collection of VMs potentially spread across multiple providers or
supercomputing sites. The key requirements, which also hold for
the present paper, were as follows.

� VNET would make within-VM network con�guration the sole
responsibility of the VM owner.

� VNET would provide location independence to VMs, allowing them
to be migrated between networks and from site to site, while
maintaining their connectivity, without requiring any within-VM
con�guration changes.

� VNET would provide hardware independence to VMs, allowing them
to use diverse networking hardware without requiring the
installation of specialized software.



� VNET would provide minimal overhead, compared to native
networking, in the contexts in which it is used.

The VNET model meets these requirements by carrying the user's
VMs' traf�c via a con�gurable overlay network. The overlay presents
a simple layer 2 networking abstraction: a user's VMs appearto
be attached to the user's local area Ethernet network, regardless
of their actual locations or the complexity of the VNET topol-
ogy/properties. Further information about the model can befound
elsewhere [42].

The VNET overlay is dynamically recon�gurable, and can act as
a locus of activity for an an adaptive system such as Virtuoso. Fo-
cusing on parallel and distributed applications running inloosely-
coupled virtualized distributed environments e.g., “IaaSClouds”,
we demonstrated that the VNET “layer” can be effectively used
to: (1) monitor application communication and computationbe-
havior [11]), (2) monitor underlying network behavior [12], (3) for-
mulate performance optimization problems [44], (4) address such
problems through VM migration and overlay network control [43],
scheduling [27, 28], network reservations [26], and network service
interposition [22].

The VNET/P system described in this paper is compatible with,
and compared to, our previous VNET implementation, VNET/U.
Both support a dynamically con�gurable general overlay topology
with dynamically con�gurable routing on a per MAC address ba-
sis. The topology and routing con�guration is subject to global
or distributed control (for example, by the VADAPT [43]) part
of Virtuoso. The overlay carries Ethernet packets encapsulated in
UDP packets, TCP streams with and without SSL encryption, TOR
privacy-preserving streams, and others. Because Ethernetpackets
are used, the VNET abstraction can also easily interface directly
with most commodity network devices, including virtual NICs ex-
posed by VMMs in the host, and with fast virtual devices (e.g.,
Linux virtio network devices) in guests.

While VNET/P is implemented within the VMM, VNET/U is
implemented as a user-level system. As a user-level system,it
readily interfaces with VMMs such as VMware Server and Xen,
and requires no host changes to be used, making it very easy for a
provider to bring it up on a new machine. Further, it is easy tobring
up VNET daemons when and where needed to act as proxies or
waypoints. A VNET daemon has a control port which speaks a con-
trol language for dynamic con�guration. A collection of tools allow
for the wholesale construction and teardown of VNET topologies,
as well as dynamic adaptation of the topology and forwardingrules
to the observed traf�c and conditions on the underlying network.

The last reported measurement of VNET/U showed it achieving
21.5 MB/s (172 Mbps) with a 1 ms latency overhead communicat-
ing between Linux 2.6 VMs running in VMware Server GSX 2.5 on
machines with dual 2.0 GHz Xeon processors [22]. A current mea-
surement, described in Section 5, shows 71 MB/s with a 0.88 msla-
tency. VNET/U's speeds are suf�cient for its purpose in providing
virtual networking for wide-area and/or loosely-coupled distributed
computing. They are not, however, suf�cient for use within aclus-
ter at gigabit or greater speeds. Making this basic VM-to-VMpath
competitive with hardware is the focus of this paper. VNET/Uis
fundamentally limited by the kernel/user space transitions needed
to handle a guest's packet send or receive. In VNET/P, we move
VNET directly into the VMM to avoid such transitions.

4. DESIGN AND IMPLEMENTATION
We now describe how VNET/P has been architected and imple-

mented in the context of Palacios as embedded in a Linux host.
Section 6 describes how VNET/P is implemented in the contextof
a Kitten embedding. The nature of the embedding affects VNET/P
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Figure 1: VNET/P architecture

primarily in how it interfaces to the underlying networkinghard-
ware and networking stack. In the Linux embedding, this interface
is accomplished directly in the Linux kernel. In the Kitten embed-
ding, the interface is done via a service VM.

4.1 Palacios VMM
VNET/P is implemented in the context of our Palacios VMM.

Palacios is an OS-independent, open source, BSD-licensed,pub-
licly available embeddable VMM designed as part of the V3VEE
project (http://v3vee.org ). The V3VEE project is a collab-
orative community resource development project involvingNorth-
western University, the University of New Mexico, Sandia National
Labs, and Oak Ridge National Lab. Detailed information about
Palacios can be found elsewhere [25, 23]. Palacios is capable of
virtualizing large scale (4096+ nodes) with< 5% overheads [24].
Palacios's OS-agnostic design allows it to be embedded intoa wide
range of different OS architectures.

4.2 Architecture
Figure 1 shows the overall architecture of VNET/P, and illus-

trates the operation of VNET/P in the context of the PalaciosVMM
embedded in a Linux host. In this architecture,guestsrun inappli-
cation VMs. Off-the-shelf guests are fully supported. Each applica-
tion VM provides a virtual (Ethernet) NIC to its guest. For high per-
formance applications, as in this paper, the virtual NIC conforms
to the virtio interface, but several virtual NICs with hardware inter-
faces are also available in Palacios. The virtual NIC conveys Eth-
ernet packets between the application VM and the Palacios VMM.
Using the virtio virtual NIC, one or more packets can be conveyed
from an application VM to Palacios with a single VM exit, and
from Palacios to the application VM with a single VM exit+entry.

The VNET/P coreis the component of VNET/P that is directly
embedded into the Palacios VMM. It is responsible for routing Eth-
ernet packets between virtual NICs on the machine and between
this machine and remote VNET on other machines. The VNET/P
core's routing rules are dynamically con�gurable, throughthe con-
trol interface by the utilities that can be run in user space.

The VNET/P core also provides an expanded interface that the
control utilities can use to con�gure and manage VNET/P. The
VNET/P controlcomponent uses this interface to do so. It in turn
acts as a daemon that exposes a TCP control port that uses the
same con�guration language as VNET/U. Between compatible en-
capsulation and compatible control, the intent is that VNET/P and
VNET/U be interoperable, with VNET/P providing the “fast path”.

To exchange packets with a remote machine, the VNET/P core
uses aVNET/P bridgeto communicate with the physical network.
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The VNET/P bridge runs as a kernel module in the host kernel and
uses the host's networking facilities to interact with physical net-
work devices and with the host's networking stack. An additional
responsibility of the bridge is to provide encapsulation. For perfor-
mance reasons, we use UDP encapsulation, in a form compatible
with that used in VNET/U. TCP encapsulation is also supported.
The bridge selectively performs UDP or TCP encapsulation for
packets destined for remote machines, but can also deliver an Eth-
ernet packet without encapsulation. In our performance evaluation,
we consider only encapsulated traf�c.

The VNET/P core consists of approximately 2500 lines of C in
Palacios, while the VNET/P bridge consists of about 2000 lines of
C comprising a Linux kernel module. VNET/P is available via the
V3VEE project's public git repository, as part of the “devel” branch
of the Palacios VMM.

4.3 VNET/P core
The VNET/P core is primarily responsible for routing, and dis-

patching raw Ethernet packets. It intercepts all Ethernet packets
from virtual NICs that are associated with VNET/P, and forwards
them either to VMs on the same host machine or to the outside net-
work through the VNET/P bridge. Each packet is routed based on
its source and destination MAC addresses. The internal processing
logic of the VNET/P core is illustrated in Figure 2.

Routing: To route Ethernet packets, VNET/P maintains routing
tables indexed by source and destination MAC addresses. Although
this table structure only provides linear time lookups, a hash table-
based routing cache is layered on top of the table, and the common
case is for lookups to hit in the cache and thus be serviced in con-
stant time.

A routing table entry maps to a destination, which is either a
link or aninterface. A link is an overlay destination—it is the next
UDP/IP-level (i.e., IP address and port) destination of thepacket,
on some other machine. A special link corresponds to the local net-
work. The local network destination is usually used at the “exit/entry
point” where the VNET overlay is attached to the user's physical
LAN. A packet routed via a link is delivered to another VNET/P
core, a VNET/U daemon, or the local network. An interface is a
local destination for the packet, corresponding to some virtual NIC.

For an interface destination, the VNET/P core directly delivers
the packet to the relevant virtual NIC. For a link destination, it in-
jects the packet into the VNET/P bridge along with the destination
link identi�er. The VNET/P bridge demultiplexes based on the link
and either encapsulates the packet and sends it via the correspond-
ing UDP or TCP socket, or sends it directly as a raw packet to the
local network.
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Figure 3: VNET/P running on a multicore system. The selec-
tion of how many, and which cores to use for packet dispatcher
threads is made dynamically.

Packet processing:Packet forwarding in the VNET/P core is
conducted bypacket dispatchers. A packet dispatcher interacts
with each virtual NIC to forward packets in one of two modes:
guest-driven modeor VMM-driven mode.

The purpose of guest-driven mode is to minimize latency for
small messages in a parallel application. For example, a barrier op-
eration would be best served with guest-driven mode. In the guest-
driven mode, the packet dispatcher is invoked when the guest's in-
teraction with the NIC explicitly causes an exit. For example, the
guest might queue a packet on its virtual NIC and then cause anexit
to notify the VMM that a packet is ready. In guest-driven mode, a
packet dispatcher runs at this point. Similarly, on receive, a packet
dispatcher queues the packet to the device and then immediately
noti�es the device.

The purpose of VMM-driven mode is to maximize throughput
for bulk data transfer in a parallel application. Unlike guest-driven
mode, VMM-driven mode tries to handle multiple packets per VM
exit. It does this by having VMM poll the virtual NIC. The NIC is
polled in two ways. First, it is polled, and a packet dispatcher is run,
if needed, in the context of the current VM exit (which is unrelated
to the NIC). Even if exits are infrequent, the polling and dispatch
will still make progress during the handling of timer interrupt exits.

The second manner in which the NIC can be polled is in the
context of a packet dispatcher running in a kernel thread inside the
VMM context, as shown in Figure 3. The packet dispatcher thread
can be instantiated multiple times, with these threads running on
different cores in the machine. If a packet dispatcher thread de-
cides that a virtual NIC queue is full, it forces the NIC's VM to
handle it by doing a cross-core IPI to force the core on which the
VM is running to exit. The exit handler then does the needed event
injection. Using this approach, it is possible, to dynamically em-
ploy idle processor cores to increase packet forwarding bandwidth.

In�uenced by Sidecore [21], an additional optimization we de-
veloped was to of�oad in-VMM VNET/P processing, beyond packet
dispatch, to an unused core or cores, thus making it possiblefor the
guest VM to have full use of its cores (minus the exit/entry costs
when packets are actually handed to/from it).

VNET/P switches between these two modes dynamically de-
pending on the arrival rate of packets destined to or from thevirtual
NIC. For low rate, it enables guest-driven mode to reduce thesin-
gle packet latency. On the other hand, with a high arrival rate it
switches to VMM-driven mode to increase throughput. Speci�-
cally, the VMM detects whether the system is experiencing a high
exit rate due to virtual NIC accesses. It recalculates the rate period-



ically. If the rate is high enough when the guest transmits packets,
then VNET/P switches the virtual NIC associated with that guest
from guest-driven mode to VMM-driven mode. In other hand, if
the rate drops low from the last recalculate period, it switches back
from VMM-driven to guest-driven mode.

For a 1 Gbps network, guest-driven mode is suf�cient to allow
VNET/P to achieve the full native throughput. On a 10 Gbps net-
work, VMM-driven mode is essential to move packets through the
VNET/P core with near-native throughput.

4.4 Virtual NICs
VNET/P is designed to be able to support any virtual Ether-

net NIC device. A virtual NIC must, however, register itselfwith
VNET/P before it can be used. This is done during the initializa-
tion of the virtual NIC at VM con�guration time. The registra-
tion provides additional callback functions for packet transmission,
transmit queue polling, and packet reception. These functions es-
sentially allow the NIC to use VNET/P as its backend, insteadof
using an actual hardware device driver backend.

Linux virtio virtual NIC: Virtio [36], which was recently de-
veloped for the Linux kernel, provides an ef�cient abstraction for
VMMs. A common set of virtio device drivers are now included
as standard in the Linux kernel. To maximize performance, our
performance evaluation con�gured the application VM with Pala-
cios's virtio-compatible virtual NIC, using the default Linux virtio
network driver.

MTU: The maximum transmission unit (MTU) of a networking
layer is the size of the largest protocol data unit that the layer can
pass onwards. A larger MTU improves throughput because each
packet carries more user data while protocol headers have a �xed
size. A larger MTU also means that fewer packets need to be pro-
cessed to transfer a given amount of data. Where per-packet pro-
cessing costs are signi�cant, larger MTUs are distinctly preferable.
Because VNET/P adds to the per-packet processing cost, support-
ing large MTUs is helpful.

VNET/P presents an Ethernet abstraction to the applicationVM.
The most common Ethernet MTU is 1500 bytes. However, 1 Gbit
and 10 Gbit Ethernet can also use “jumbo frames”, with an MTU
of 9000 bytes. Other networking technologies support even larger
MTUs. To leverage the large MTUs of underlying physical NICs,
VNET/P itself supports MTU sizes of up to 64 KB.1 The appli-
cation OS can determine the virtual NIC's MTU and then trans-
mit/receive accordingly. VNET/P advertises the appropriate MTU.

The MTU used by virtual NIC can result in encapsulated VNET/P
packets that exceed the MTU of the underlying physical network.
In this case, fragmentation has to occur, either in the VNET/P bridge
or in the host NIC (via TCP Segmentation Of�oading (TSO)). Frag-
mentation and reassembly is handled by VNET/P and is totally
transparent to the application VM. However, performance will suf-
fer when signi�cant fragmentation occurs. Thus it is important that
the application VM's device driver select an MTU carefully,and
recognize that the desirable MTU may change over time, for exam-
ple after a migration to a different host. In Section 5, we analyze
throughput using different MTUs.

4.5 VNET/P Bridge
The VNET/P bridge functions as a network bridge to direct pack-

ets between the VNET/P core and the physical network throughthe
host NIC. It operates based on the routing decisions made by the
VNET/P core which are passed along with the packets to be for-
warded. It is implemented as a kernel module running in the host.
1This may be expanded in the future. Currently, it has been sized
to support the largest possible IPv4 packet size.

When the VNET/P core hands a packet and routing directive up
to the bridge, one of two transmission modes will occur, depending
on the destination. In adirect send, the Ethernet packet is directly
sent. This is common for when a packet is exiting a VNET over-
lay and entering the physical network, as typically happenson the
user's network. It may also be useful when all VMs will remain
on a common layer 2 network for their lifetime. In anencapsu-
lated sendthe packet is encapsulated in a UDP packet and the UDP
packet is sent to the directed destination IP address and port. This is
the common case for traversing a VNET overlay link. Similarly, for
packet reception, the bridge uses two modes, simultaneously. In a
direct receivethe host NIC is run in promiscuous mode, and packets
with destination MAC addresses corresponding to those requested
by the VNET/P core are handed over to it. This is used in con-
junction with direct send. In anencapsulated receiveUDP packets
bound for the common VNET link port are disassembled and their
encapsulated Ethernet packets are delivered to the VNET/P core.
This is used in conjunction with encapsulated send. Our perfor-
mance evaluation focuses solely on encapsulated send and receive.

4.6 Control
The VNET/P control component allows for remote and local

con�guration of links, interfaces, and routing rules so that an over-
lay can be constructed and changed over time. VNET/U already
has user-level tools to support VNET, and, as we described inSec-
tion 3, a range of work already exists on the con�guration, mon-
itoring, and control of a VNET overlay. In VNET/P, we reuse
these tools as much as possible by having the user-space viewof
VNET/P conform closely to that of VNET/U. TheVNET/P con-
�guration consoleallows for local control to be provided from a
�le, or remote control via TCP-connected VNET/U clients (such
as tools that automatically con�gure a topology that is appropriate
for the given communication pattern among a set of VMs [43]).In
both cases, the VNET/P control component is also responsible for
validity checking before it transfers the new con�gurationto the
VNET/P core.

4.7 Performance-critical data paths and �ows
Figure 4 depicts how the components previously described oper-

ate during packet transmission and reception. These are theperfor-
mance critical data paths and �ows within VNET/P, assuming that
virtio virtual NICs (Section 4.4) are used. The boxed regions of
the �gure indicate steps introduced by virtualization, both within
the VMM and within the host OS kernel. There are also additional
overheads involved in the VM exit handling for I/O port readsand
writes and for interrupt injection.

Transmission: The guest OS in the VM includes the device
driver for the virtual NIC. The driver initiates packet transmission
by writing to a speci�c virtual I/O port after it puts the packet into
the NIC's shared ring buffer (TXQ). The I/O port write causes
an exit that gives control to the virtual NIC I/O handler in Pala-
cios. The handler reads the packet from the buffer and writesit
to VNET/P packet dispatcher. The dispatcher does a routing table
lookup to determine the packet's destination. For a packet destined
for a VM on some other host, the packet dispatcher puts the packet
into the receive buffer of the VNET/P bridge and notify it. Mean-
while, VNET/P bridge fetches the packet from the receive buffer,
determines its destination VNET/P bridge, encapsulates the packet,
and transmits it to the physical network via the host's NIC.

Note that while the packet is handed off multiple times, it is
copied only once inside the VMM, from the send buffer (TXQ)
of the receive buffer of the VNET/P bridge. Also note that while
the above description, and the diagram suggest sequentiality, packet
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Figure 4: Performance-critical data paths and �ows for packet
transmission and reception. Solid boxed steps and components
occur within the VMM itself, while dashed boxed steps and
components occur in the host OS.

dispatch can occur on a separate kernel thread running on a separate
core, and the VNET/P bridge itself introduces additional concur-
rency. From the guest's perspective, the I/O port write thatinitiated
transmission returns essentially within a VM exit/entry time.

Reception: The path for packet reception is essentially sym-
metric to that of transmission. The host NIC in the host machine
receives a packet using its standard driver and delivers it to the
VNET/P bridge. The bridge unencapsulates the packet and sends
the payload (the raw Ethernet packet) to the VNET/P core. The
packet dispatcher in VNET/P core determines its destination VM
and puts the packet into the receive buffer (RXQ) of its virtual NIC.

Similar to transmission, there is considerably concurrency in the
reception process. In particular, packet dispatch can occur in paral-
lel with the reception of the next packet.

5. PERFORMANCE EVALUATION
The purpose of our performance evaluation is to determine how

close VNET/P comes to native throughput and latency in the most
demanding (lowest latency, highest throughput) hardware environ-
ments. We consider communication between two machines whose
NICs are directly connected in most of our detailed benchmarks.
In the virtualized con�guration the guests and performancetesting
tools run on top of Palacios with VNET/P carrying all traf�c be-
tween them using encapsulation. In the native con�guration, the
same guest environments run directly on the hardware.

Our evaluation of communication performance in this environ-
ment occurs at three levels. First, we benchmark the TCP and
UDP bandwidth and latency. Second, we benchmark MPI using
a widely used benchmark. Finally, we evaluated the performance
of the HPCC and NAS application benchmarks in a cluster to see

how VNET/P's impact on the performance and scalability of paral-
lel applications.

5.1 Testbed and con�gurations
Most of our microbenchmark tests are focused on the end-to-

end performance of VNET/P. Therefore our testbed consists of two
physical machines, which we call host machines. Each machine has
a quadcore 2.4 GHz X3430 Intel Xeon(tm) processor, 8 GB RAM,
a Broadcom NetXtreme II 1 Gbps Ethernet NIC (1000BASE-T),
and a NetEffect NE020 10 Gbps Ethernet �ber optic NIC (10GBASE-
SR) in a PCI-e slot. The Ethernet NICs of these machines are di-
rectly connected with twisted pair and �ber patch cables.

All microbenchmarks included in the performance section are
run in the testbed described above. The HPCC and NAS appli-
cation benchmarks are run on a 6-node test cluster describedin
Section 5.4.

We considered the following two software con�gurations:
� Native: In the native con�guration, neither Palacios nor VNET/P is

used. A minimal BusyBox-based Linux environment based on an
unmodi�ed 2.6.30 kernel runs directly on the host machines.We
refer to the 1 and 10 Gbps results in this con�guration asNative-1G
andNative-10G, respectively.

� VNET/P:The VNET/P con�guration corresponds to the architectural
diagram given in Figure 1, with a single guest VM running on
Palacios. The guest VM is con�gured with one virtio network
device, 2 cores, and 1 GB of RAM. The guest VM runs a minimal
BusyBox-based Linux environment, based on the 2.6.30 kernel.
The kernel used in the VM is identical to that in the Native
con�guration, with the exception that the virtio NIC drivers are
loaded. The virtio MTU is con�gured as 9000 Bytes. We refer to
the 1 and 10 Gbps results in this con�guration asVNET/P-1Gand
VNET/P-10G, respectively.

To assure accurate time measurements both natively and in the
virtualized case, our guest is con�gured to use the CPU's cycle
counter, and Palacios is con�gured to allow the guest directac-
cess to the underlying hardware cycle counter. Our 1 Gbps NIC
only supports MTUs up to 1500 bytes, while our 10 Gbps NIC can
support MTUs of up to 9000 bytes. We use these maximum sizes
unless otherwise speci�ed.

5.2 TCP and UDP microbenchmarks
Latency and throughput are the fundamental measurements we

use to evaluate the VNET/P system performance. First, we consider
these at the IP level, measuring the round-trip latency, theUDP
goodput, and the TCP throughput between two nodes. We measure
round-trip latency usingpingby sending ICMP packets of different
sizes. UDP and TCP throughput are measured usingttcp-1.10.

UDP and TCP with a standard MTU: Figure 5 shows the TCP
throughput and UDP goodput achieved in each of our con�gura-
tions on each NIC. For the 1 Gbps network, host MTU is set to
1500 bytes, and for the 10 Gbps network, host MTUs of 1500
bytes and 9000 bytes are both tested. For 1 Gbps, we also com-
pare with VNET/U running on the same hardware with Palacios.
Compared to previously reported results (21.5 MB/s, 1 ms), the
combination of the faster hardware we use here, and Palacios, leads
to VNET/U increasing its bandwidth by 330%, to 71 MB/s, with a
12% reduction in latency, to 0.88 ms. We also tested VNET/U with
VMware, �nding that bandwidth increased by 63% to 35 MB/s,
with no change in latency. The difference in performance of VNET/U
on the two VMMs is due to a custom tap interface in Palacios, while
on VMware, the standard host-only tap is used. Even with thisop-
timization, VNET/U cannot saturate a 1 Gbps link.

We begin by considering UDP goodput when a standard host
MTU size is used. For UDP measurements, ttcp was con�gured to
use 64000 byte writes sent as fast as possible over 60 seconds. For
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(b) 10 Gbps network (host MTU=1500, 9000 Bytes)

Figure 5: End-to-end TCP throughput and UDP goodput of
VNET/P on 1 and 10 Gbps network. VNET/P performs iden-
tically to the native case for the 1 Gbps network and achieves
74–78% of native throughput for the 10 Gbps network.

the 1 Gbps network, VNET/P easily matches the native goodput.
For the 10 Gbps network, VNET/P achieves 74% of the native UDP
goodput.

For TCP throughput, ttcp was con�gured to use a 256 KB socket
buffer, and to communicate 40 MB writes were made. Similar to
the UDP results, VNET/P has no dif�culty achieving native through-
put on the 1 Gbps network. On the 10 Gbps network, using a stan-
dard Ethernet MTU, it achieves 78% of the native throughput.The
UDP goodput and TCP throughput that VNET/P is capable of, us-
ing a standard Ethernet MTU, are approximately 8 times thosewe
would expect from VNET/U given the 1 Gbps results.

UDP and TCP with a large MTU: We now consider TCP and
UDP performance with 9000 byte jumbo frames our 10 Gbps NICs
support. We adjusted the VNET/P MTU so that the ultimate encap-
sulated packets will �t into these frames without fragmentation. For
TCP we con�gure ttcp to use writes of corresponding size, maxi-
mize the socket buffer size, and do 4 million writes. For UDP,we
con�gure ttcp to use commensurately large packets sent as fast as
possible for 60 seconds. The results are also shown in the Figure 5.
We can see that performance increases across the board compared
to the 1500 byte MTU results. Compared to the VNET/U perfor-
mance we would expect in this con�guration, the UDP goodput and
TCP throughput of VNET/P are over 10 times higher.

Latency: Figure 6 shows the round-trip latency for different
packet sizes, as measured by ping. The latencies are the average
of 100 measurements. While the increase in latency of VNET/P
over Native is signi�cant in relative terms (2x for 1 Gbps, 3xfor
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Figure 6: End-to-end round-trip latency of VNET/P as a func-
tion of ICMP packet size. Small packet latencies on a 10 Gbps
network in VNET/P are � 130� s.

10 Gbps), it is important to keep in mind the absolute performance.
On a 10 Gbps network, VNET/P achieves a 130� s round-trip, end-
to-end latency. The latency of VNET/P is almost seven times lower
than that of VNET/U.

5.3 MPI microbenchmarks
Parallel programs for distributed memory computers are typi-

cally written to the MPI interface standard. We used the OpenMPI
1.3 [7] implementation in our evaluations. We measured the perfor-
mance of MPI over VNET/P by employing the widely-used Intel
MPI Benchmark Suite (IMB 3.2.2) [16], focusing on the point-to-
point messaging performance. We compared the basic MPI latency
and bandwidth achieved by VNET/P and natively.

Figures 7 and 8(a) illustrate the latency and bandwidth reported
by Intel MPI PingPong benchmark for our 10 Gbps con�guration.
Here the latency measured is the one-way, end-to-end, application-
level latency. That is, it is the time from when an MPI send starts
on one machine to when its matching MPI receive call completes
on the other machine. For both Native and VNET/P, the host MTU
is set to 9000 bytes.

VNET/P's small message MPI latency is about 55� s, about 2.5
times worse than the native case. However, as the message size
increases, the latency difference decreases. The measurements of
end-to-end bandwidth as a function of message size show thatna-
tive MPI bandwidth is slightly lower than raw UDP or TCP through-
put, and VNET/P performance tracks it similarly. The bottomline
is that the current VNET/P implementation can deliver an MPIla-
tency of 55� s and bandwidth of 510 MB/s on 10 Gbps Ethernet
hardware.
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Figure 7: One-way latency on 10 Gbps hardware from Intel
MPI PingPong microbenchmark

Figure 8(b) shows the results of the MPI SendRecv microbench-
mark in which each node simultaneously sends and receives. There
is no reduction in performance between the bidirectional case and
the unidirectional case.

5.4 HPCC benchmarks on more nodes
To test VNET/P performance on more nodes, we ran the HPCC

benchmark [15] suite on a 6 node cluster with 1 Gbps and 10 Gbps
Ethernet. Each node was equipped with two quad-core 2.3 GHz
2376 AMD Opterons, 32 GB of RAM, an nVidia MCP55 Forthdeth
1 Gbps Ethernet NIC and a NetEffect NE020 10 Gbps Ethernet
NIC. The nodes were connected via a Fujitsu XG2000 10Gb Eth-
ernet Switch.

The VMs were all con�gured exactly as in previous tests, with4
virtual cores, 1 GB RAM, and a virtio NIC. For the VNET/P test
case, each host ran one VM. We executed tests with 2, 3, 4, 5, and 6
VMs, with 4 HPCC processes per VM (one per virtual core). Thus,
our performance results are based on HPCC with 8, 12, 16, 20 and
24 processes for both VNET/P and Native tests. In the native cases,
no VMs were used, and the processes ran directly on the host. For 1
Gbps testing, the host MTU was set to 1500, while for the 10 Gbps
cases, the host MTU was set to 9000.

Latency-bandwidth benchmark: This benchmark consists of
the ping-pong test and the ring-based tests. The ping-pong test
measures the latency and bandwidth between all distinct pairs of
processes. The ring-based tests arrange the processes intoa ring
topology and then engage in collective communication amongneigh-

bors in the ring, measuring bandwidth and latency. The ring-based
tests model the communication behavior of multi-dimensional domain-
decomposition applications. Both naturally ordered ringsand ran-
domly ordered rings are evaluated. Communication is done with
MPI non-blocking sends and receives, and MPI SendRecv. Here,
the bandwidth per process is de�ned as total message volume di-
vided by the number of processes and the maximum time needed
in all processes. We reported the ring-based bandwidths by multi-
plying them with the number of processes in the test.

Figure 9 shows the results for different numbers of test processes.
The ping-pong latency and bandwidth results are consistentwith
what we saw in the previous microbenchmarks: in the 1 Gbps net-
work, bandwidth are nearly identical to those in the native cases
while latencies are 1.2–2 times higher. In the 10 Gbps network,
bandwidths are within 60-75% of native while latencies are about
2 to 3 times higher. Both latency and bandwidth under VNET/P
exhibit the same good scaling behavior of the native case.

5.5 Application benchmarks
We evaluated the effect of a VNET/P overlay on application

performance by running two HPCC application benchmarks and
the whole NAS benchmark suite on the cluster described in Sec-
tion 5.4. Overall, the performance results from the HPCC andNAS
benchmarks suggest that VNET/P can achieve high performance
for many parallel applications.

HPCC application benchmarks: We considered the two ap-
plication benchmarks from the HPCC suite that exhibit the large
volume and complexity of communication: MPIRandomAcceess
and MPIFFT. For 1 Gbps networks, the difference in performance
is negligible so we focus here on 10 Gbps networks.

In MPIRandomAccess, random numbers are generated and writ-
ten to a distributed table, with local buffering. Performance is
measured by the billions of updates per second (GUPs) that are
performed. Figure 10(a) shows the results of MPIRandomAccess,
comparing the VNET/P and Native cases. VNET/P achieves 65-
70% application performance compared to the native cases, and
performance scales similarly.

MPIFFT implements a double precision complex one-dimensional
Discrete Fourier Transform (DFT). Figure 10(b) shows the results
of MPIFFT, comparing the VNET/P and Native cases. It shows
that VNET/P's application performance is within 60-70% of native
performance, with performance scaling similarly.

NAS parallel benchmarks: The NAS Parallel Benchmark (NPB)
suite [46] is a set of �ve kernels and three pseudo-applications
that is widely used in parallel performance evaluation. We specif-
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Figure 9: HPCC Latency-bandwidth benchmark for both 1 Gbps and 10 Gbps. Ring-based bandwidths are multiplied by the total
number of processes in the test. The ping-pong latency and bandwidth tests show results that are consistent with the previous
microbenchmarks, while the ring-based tests show that latency and bandwidth of VNET/P scale similarly to the native cases.

(a) MPIRandomAccess (b)MPIFFT

Figure 10: HPCC application benchmark results. VNET/P achieves reasonable and scalable application performance whensupport-
ing communication-intensive parallel application workloads on 10 Gbps networks. On 1 Gbps networks, the difference isnegligible.

ically use NPB-MPI 2.4 in our evaluation. In our description, we
name executions with the format "name.class.procs". For example,
bt.B.16means to run the BT benchmark on 16 processes with a
class B problem size.

We run each benchmark with at least two different scales and one
problem size, except FT, which is only run with 16 processes.One

VM is run on each physical machine, and it is con�gured as de-
scribed in Section 5.4. The test cases with 8 processes are running
within 2 VMs and 4 processes started in each VM. The test cases
with 9 processes are run with 4 VMs and 2 or 3 processes per VM.
Test cases with with 16 processes have 4 VMs with 4 processes per



Mop/s Native-1G VNET/P-1G V NET=P � 1G
Native � 1G (%) Native-10G VNET/P-10G V NET=P � 10G

Native � 10G (%)

ep.B.8 103.15 101.94 98.8% 102.18 102.12 99.9%
ep.B.16 204.88 203.9 99.5% 208 206.52 99.3%
ep.C.8 103.12 102.1 99.0% 103.13 102.14 99.0%
ep.C.16 206.24 204.14 99.0% 206.22 203.98 98.9%
mg.B.8 4400.52 3840.47 87.3% 5110.29 3796.03 74.3%
mg.B.16 1506.77 1498.65 99.5% 9137.26 7405 81.0%
cg.B.8 1542.79 1319.43 85.5% 2096.64 1806.57 86.2%
cg.B.16 160.64 159.69 99.4% 592.08 554.91 93.7%
ft.B.16 1575.83 1290.78 81.9% 1432.3 1228.39 85.8%
is.B.8 78.88 74.61 94.6% 59.15 59.04 99.8%
is.B.16 35.99 35.78 99.4% 23.09 23 99.6%
is.C.8 89.54 82.15 91.7% 132.08 131.87 99.8%
is.C.16 84.76 82.22 97.0% 77.77 76.94 98.9%
lu.B.8 6818.52 5495.23 80.6% 7173.65 6021.78 83.9%
lu.B.16 7847.99 6694.12 85.3% 12981.86 9643.21 74.3%
sp.B.9 1361.38 1215.85 89.3% 2634.53 2421.98 91.9%
sp.B.16 1489.32 1399.6 94.0% 3010.71 2916.81 96.9%
bt.B.9 3423.52 3297.04 96.3% 5229.01 4076.52 78.0%
bt.B.16 4599.38 4348.99 94.6% 6315.11 6105.11 96.7%

Figure 11: NAS Parallel Benchmark performance with VNET/P on 1 Gbps and 10 Gbps networks. VNET/P can achieve native
performance on many applications, while it can get reasonable and scalable performance when supporting highly communication-
intensive parallel application workloads.

VM. We report each benchmark'sMop/s totalresult for both native
and with VNET/P.

Figure 11 shows the NPB performance results, comparing the
VNET/P and Native cases on both 1 Gbps and 10 Gbps networks.
The upshot of the results is that for most of the NAS benchmarks,
VNET/P is able to achieve in excess of 95% of the native perfor-
mance even on 10 Gbps networks. We now describe the results for
each benchmark.

EP is an "embarrassingly parallel" kernel that estimates the upper
achievable limits for �oating point performance, It does not require
a signi�cant interprocessor communication. VNET/P achieves na-
tive performance in all cases.

MG is a simpli�ed multigrid kernel that requires highly struc-
tured long distance communication and tests both short and long
distance data communication. With 16 processes, MG achieves
native performance on the 1 Gbps network, and 81% of native per-
formance on the 10 Gbps network.

CG implements the conjugate gradient method to compute an ap-
proximation to the smallest eigenvalue of a large sparse symmetric
positive de�nite matrix. It is typical of unstructured gridcomputa-
tions in that it tests irregular long distance communication, employ-
ing unstructured matrix vector multiplication. With 16 processes,
CG achieves native performance on the 1 Gbps network and 94%
of native performance on the 10 Gbps network.

FT implements the solution of partial differential equations us-
ing FFTs, and captures the essence of many spectral codes. Itis a
rigorous test of long-distance communication performance. With
16 nodes, it achieves 82% of native performance on 1 Gbps and
86% of native performance on 10 Gbps.

IS implements a large integer sort of the kind that is important
in particle method codes and tests both integer computationspeed
and communication performance. Here VNET/P achieves native
performance in all cases.

LU solves a regular-sparse, block (5 � 5) lower and upper tri-
angular system, a problem associated with implicit computational
�uid dynamics algorithms. VNET/P achieves 75%-85% of native

performance on this benchmark, and there is no signi�cant differ-
ence between the 1 Gbps and 10 Gbps network.

SP and BT implement solutions of multiple, independent sys-
tems of non diagonally dominant, scalar, pentadiagonal equations,
also common in computational �uid dynamics. The salient differ-
ence between the two is the communication to computation ratio.
For SP with 16 processes, VNET/P achieves 94% of native perfor-
mance on 1 Gbps around 97% of native on 10 Gbps. For BT at the
same scale, 95% of native at 1 Gbps and 97% of native at 10 Gbps
are achieved.

6. VNET/P FOR INFINIBAND
In support of hardware independence, the 3rd goal of VNET ar-

ticulated in Section 3, we have developed an implementationof
VNET/P that allows guests that only support Ethernet NICs tobe
seamlessly run on top of an In�niBand network, or to span In�ni-
Band networks and other networks. Regardless of the underlying
networking hardware, the guests see a simple Ethernet LAN.

For the current In�niband implementation, the host OS that is
used is Sandia National Labs' Kitten lightweight kernel. Kitten
has, by design, a minimal set of in-kernel services. For thisreason,
the VNET/P Bridge functionality is not implemented in the kernel,
but rather in a privileged service VM called the Bridge VM that has
direct access to the physical In�niband device.

In place of encapsulating Ethernet packets in UDP packets for
transmission to a remote VNET/P core, VNET/P's In�niBand sup-
port simply maps Ethernet packets to In�niBand frames. These
frames are then transmitted through an In�niBand queue pairac-
cessed via the Linux IPoIB framework.

We conducted preliminary performance tests of VNET/P on In-
�niBand using 8900 byte TCP payloads running on ttcp on a testbed
similar to the one described in Section 5.1. Here, each node was a
dual quad-core 2.3 GHz 2376 AMD Opteron machine with 32 GB
of RAM and a Mellanox MT26428 In�niBand NIC in a PCI-e slot.
The In�niband NICs were connected via a Mellanox MTS 3600
36-port 20/40Gbps In�niBand switch.



It is important to point out that VNET/P over In�niband is a work
in progress and we present it here as a proof of concept. Nonethe-
less, on this testbed it achieved 4.0 Gbps end-to-end TCP through-
put, compared to 6.5 Gbps when run natively on top of IP-over-
In�niBand in Reliable Connected (RC) mode.

7. CONCLUSION AND FUTURE WORK
We have described the VNET model of overlay networking in

a distributed virtualized computing environment and our efforts in
extending this simple and �exible model to support tightly-coupled
high performance computing applications running on high-performance
networking hardware in current supercomputing environments, fu-
ture data centers, and future clouds. VNET/P is our design and
implementation of VNET for such environments. Its design goal
is to achieve near-native throughput and latency on 1 and 10 Gbps
Ethernet, In�niBand, and other high performance interconnects.

To achieve performance, VNET/P relies on several key tech-
niques and systems, including lightweight virtualizationin the Pala-
cios virtual machine monitor, high-performance I/O, and multi-
core overlay routing support. Together, these techniques enable
VNET/P to provide a simple and �exible level 2 Ethernet network
abstraction in a large range of systems no matter the actual underly-
ing networking technology is. While our VNET/P implementation
is tightly integrated into our Palacios virtual machine monitor, the
principles involved could be used in other environments as well.

We are currently working to further enhance VNET/P's perfor-
mance through its guarded privileged execution directly inthe guest,
including an uncooperative guest. We are also enhancing itsfunc-
tionality through broader support on In�niBand and on the Cray
SeaStar interconnect.
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