
Better than Native: Using virtualization to improve
compute node performance

Brian Kocoloski John Lange
{briankoco,jacklange}@cs.pitt.edu
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

ABSTRACT
Modified variants of Linux are likely to be the underlying
operating systems for future exascale platforms. Despite
the many advantages of this approach, a subset of applica-
tions exist in which a lightweight kernel (LWK) based OS
is needed and/or preferred. We contend that virtualization
is capable of supporting LWKs as virtual machines (VMs)
running at scale on top of a Linux environment. Further-
more, we claim that a properly designed virtual machine
monitor (VMM) can provide an isolated and independent
environment that avoids the overheads of the Linux host
OS. To validate the feasibility of this approach we demon-
strate that given a Linux host OS, benchmarks running in a
virtualized LWK environment are capable of outperforming
the same benchmarks executed directly on the Linux host.

1. INTRODUCTION
Linux derived kernels and environments are quickly be-

coming accepted as the dominant operating system for large
scale supercomputing platforms [5, 1, 3], and by all appear-
ances this trend will continue as we move into the exascale
era. This is in large part due to the fact that Linux based
environments provide a number of advantages, such as lever-
aging existing codebases and providing a high degree of fa-
miliarity for application developers. Furthermore, as HPC
platforms become more complex, it is becoming increasingly
infeasible to develop custom OSes from scratch that ade-
quately leverage the large number of new hardware features
and devices. In addition to greater complexity, access to
the systems is becoming more opaque and restricted. For
instance Compute Node Linux (CNL) [5], the heavily mod-
ified version of Linux distributed by Cray, is very tightly
controlled both through export restrictions and NDAs, and
also includes binary only device drivers. These restrictions

This work is made possible by support from the National Sci-
ence Foundation (NSF) via grants CNS-0709168 and CNS-
0707365, and the Department of Energy (DOE) via grant
DE-SC0005343.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ROSS ’12, June 29, 2012, Venice, Italy
Copyright 2012 ACM 978-1-4503-1460-2/12/06 ...$10.00.

make modifying CNL or developing a new custom OS for
the platform exceedingly difficult.

While results have shown that Linux based environments
are fully capable for most applications, there does exist a
subset of applications where the overheads associated with
a Linux environment have a significant impact on perfor-
mance. For instance in [11], the authors compared CNL
against a legacy lightweight OS (Catamount). The results
showed that while CNL was able to provide adequate per-
formance (within ∼5%) for most applications, there were
several cases where CNL’s results where on average ∼17%
worse. While these results are dated, and CNL’s perfor-
mance has undoubtedly improved since, we nevertheless be-
lieve that in a supercomputing environment there will al-
ways exist a subset of applications that will exhibit superior
performance when executing on top of a Lightweight Kernel
(LWK). Accordingly, we posit that there will always exist a
place for customized lightweight kernels on production exas-
cale systems, even if they are not the primary OS of choice.

In this paper we claim that while Linux will become the
standard exascale OS, there should be a mechanism whereby
lightweight kernels (LWKs) can be used by a subset of appli-
cations that require them. We also believe that a virtualiza-
tion based approach is capable of providing this functional-
ity through the creation of independent and isolated virtual
machine environments. LWKs running inside VMs could be
given direct access to system resources without having to
incur the overheads of going through the host OS, and so
applications would be able to achieve superior performance
than would be possible if they executed natively on the host
kernel. Furthermore, virtualization will enable Linux based
exascale machines to provision these specialized lightweight
environments without the effort of reconfiguring the entire
system.

To justify our claim we we have evaluated the performance
of the Palacios Virtual Machine Monitor in an unmodified
Linux host OS. For this work we used version 1.3 of the Pala-
cios VMM, which integrates with a host Linux kernel via the
kernel module interface. The codebase is publicly available
and has been described in more detail previously [6]. Pala-
cios 1.3 is fully compatible with a wide range of unmodi-
fied Linux kernels including versions 2.6.32 through 3.1. In
addition, Palacios is fully compatible with CNL, based on
versions available to Oak Ridge and Sandia National Labs.

Palacios’ approach to virtualizing Linux based environ-
ments is to allocate a pool of resources that is separately
managed by the Palacios VMM, outside the context of the
host Linux kernel. This approach allows Palacios to provide

hardware resources directly to a guest environment without
any of the overheads of going through the Linux resource
management layers. The benefit of this approach is that
Palacios is able to avoid the overheads associated with Linux
and so provide near native performance for an LWK execut-
ing inside a VM. This allows applications optimized for a
lightweight environment to achieve better performance than
they would if executing directly on the host Linux kernel.

This paper makes the following contributions:

• We make the claim that virtualization is capable of
improving application performance over a native Linux
host environment.

• We present preliminary results using Palacios that demon-
strate the feasibility of this approach.

The remainder of the paper is laid out as follows: In sec-
tion 2, we discuss our VMM Palacios. In section 3, we dis-
cuss the drawbacks of Linux based supercomputing envi-
ronments. We present a performance evaluation, including
descriptions of the benchmarks we ran in section 4. We dis-
cuss future work in section 5, related work in section 6, and
we conclude in section 7.

2. THE PALACIOS VMM
The work in this paper is based on the Palacios Virtual

Machine Monitor whose in depth description has been pre-
sented elsewhere [8, 7]. Palacios provides modular virtual-
ization functionality to x86 based architectures, such as the
Cray XT as well as commodity HPC systems. Our previ-
ous work with the Palacios VMM focused on providing a
high performance virtualization layer for lightweight kernels
(LWKs) and other supercomputing class operating systems,
resulting in a demonstration that virtualization can be used
on modern supercomputers with minimal overhead. While
our initial focus was on providing virtualization support for
lightweight kernels, it has become evident that the future
petascale and exascale era will be ever more Linux centric.
While we still believe in the utility of lightweight kernel ar-
chitectures, it is unclear exactly what their role will be in fu-
ture systems. Based on this observation, the Palacios VMM
was ported to Linux in order to evaluate its ability to pro-
vide HPC capable virtualization in a non-lightweight host
environment. This effort has culminated in the release of
version 1.3 of Palacios in November 2011 (described else-
where [6]), which provides full support for host OSes based
on both Linux and the Kitten lightweight kernel.

Due to the additional complexity and feature set of a typ-
ical Linux kernel, we had to take a different approach to
host OS integration. Lightweight kernels are notable in their
approach to resource management, in that they often rely
on the resource consumer to handle many of the manage-
ment functions. The reason for this approach is to allow an
HPC application to decide precisely which resources it needs
and how they are allocated, which reduces both the man-
agement overhead of the host OS but also the limitations
imposed by the OS architecture. This hands off approach
made implementing the Palacios VMM in a LWK straight-
forward in that the VMM was able to directly allocate raw
hardware resources and expose them directly to a guest en-
vironment. Contrary to the LWK approach, Linux derived
kernels tend to impose their own management architectures

Hardware

Palacios VMM

Lightweight Kernel

Management
Processes

+
System Daemons

Linux Module Interface

Linux derived
Compute Node

OS

HPC Application

Palacios Resource
Managers

Figure 1: Organization of a virtualized HPC Linux
System

over the hardware resources. This makes it difficult to di-
rectly allocate raw resources inside our VMM, and required
a different approach to OS/VMM integration.

When porting Palacios to Linux we focused on two cen-
tral goals. First, to ensure wide compatibility with exist-
ing and future systems our architecture must not require
modifications of any part of the Linux kernel. Second, in
order to provide acceptable performance in an HPC envi-
ronment Palacios must be provided with direct access to
raw hardware resources while avoiding any overheads im-
posed by Linux’s management layers. A high level view of
our approach is shown in Figure 1. In order to meet the
first goal, we integrated the Palacios VMM into a loadable
kernel module that could be directly inserted into a running
host OS at runtime. This approach required that we utilize
existing module accessible APIs that remain relatively sta-
ble compared to the rest of the kernel. Thus we are able
to ensure wide spread compatibility while also eliminating
the need to rely on any modification of the Linux codebase.
For the second goal, we utilized a number of techniques that
allow Palacios to effectively bypass the Linux management
layers and access hardware resources directly when needed.
In this paper we present two of these techniques for memory
management and processor scheduling.

3. THE DRAWBACKS OF LINUX
While there are a number of strong reasons to adopt Linux

based environments in supercomputing environments, there
are a number of shortcomings as well. Historically, the
overhead imposed by Linux has been significant and so im-
posed performance problems when scaling up to supercom-
puting class systems. However, recent work has done much
to minimize Linux’s performance penalty, both as part of
the mainline kernel development as well as customizations
made by the HPC community. Currently there are two sig-
nificant Linux distributions targeting large scale supercom-
puting platforms: Cray’s Compute Node Linux (CNL) [5]
and ZeptoOS [1]. While these two examples have done a
great deal to make Linux based environments acceptable for
petascale platforms there are still a number of deficiencies
(technical and non-technical) to adopting Linux on current
and future platforms. We focus first on the non-technical
issues.

The largest drawback of using Linux in the supercomput-
ing context is the fact that, while much improved, Linux is
still a commodity operating system. As such its goals are
necessarily different from those of the HPC community. This

results in the necessity of modifying and customizing Linux’s
architecture in order to avoid many of the overheads that are
inherent in its design. Furthermore, once these modifications
have been made there is a large amount of maintenance cost
associated with keeping the modifications current with the
constantly evolving Linux code base. These maintenance re-
quirements place a large burden on the OS developers, and
are probably only sustainable in a corporate setting or large
research groups. As an example, the latest version of the
ZeptoOS compute node kernel is based on Linux kernel ver-
sion 2.6.19, a codebase released in late 2006. This is not
meant to be critical of the ZeptoOS project, but is merely
highlighting the fact that continued maintenance is a signif-
icant burden that is very difficult to sustain. In fact current
trends with CNL seem to indicate that there is an active
effort to reduce the number of modifications made to the
kernel itself.

An additional limitation inherent in the supercomputing
context is the fact that access to the hardware and soft-
ware platforms is significantly restricted to a small subset of
the HPC community. The source code for CNL is both ex-
port controlled and apparently restricted to those who have
signed an NDA with Cray. Furthermore, the device drivers
for the Gemini devices (Cray’s latest networking device) are
distributed only in binary form. These restrictions make it
overly difficult for advances and improvements to be made
by the broader HPC systems community.

We claim that, with the Palacios VMM, these drawbacks
can be overcome or at least reduced to a large degree. First,
as stated earlier Palacios is implemented as a loadable ker-
nel module that requires no modifications to the host Linux
kernel. Furthermore, the interfaces used by Palacios are con-
sidered to be generally stable, and persist across many ker-
nel versions. For example, we can confirm that the current
version of Palacios is fully compatible with Linux versions
2.6.32 through 3.1 (almost a 2 year window). In fact, it
has been confirmed that Palacios is compatibile with Cray’s
CNL version 2.6.32 and can launch a Palacios based VM on
a compute node in a Cray XT5 development rack. This was
done by a collaborator at Oak Ridge National Labs using a
version of Palacios that until now has only been developed
with a commodity Linux kernel. Additionally, Palacios and
Kitten are fully open source1 and freely available to the en-
tire community. These features mean that even in a fairly
restricted environment, the benefits of an LWK are accessi-
ble to a broad range of applications and users.

3.1 Memory management
Linux’s memory management architecture has long been

identified as a source of considerable overhead for HPC en-
vironments. As such a significant amount of work has gone
into optimizing memory performance on both CNL and Zep-
toOS. These optimizations focus on improving memory man-
agement performance as well as reducing TLB miss rates by
modifying the standard memory architecture to utilize large
contiguous memory regions. In ZeptoOS this takes the form
of their “Big Memory” architecture [12] that preallocates a
large contiguous memory region at boot time that can then
be used directly by applications. While information con-
cerning Cray’s CNL is limited due to access restrictions,
it does appear that Cray’s approach mirrors the standard

1Palacios is distributed under a BSD license, while Kitten
is distributed under the GPL

HugeTLBFS architecture from Linux. It should be noted
that the key feature of optimized memory systems is to pro-
vide large contiguous and preallocated memory regions that
are directly accessible to the application.

In this paper we propose approaching the memory system
optimization problem by splitting it into two halves. In the
bottom half, the Palacios VMM handles the allocation of
large contiguous regions of physical memory in a way that
bypasses the host OS memory management system. Using a
minimal memory management layer and the availability of
Hot Pluggable memory in the host OS, Palacios is able to
completely take over the management of very large blocks
of contiguous memory 2, while at the same time disabling
the host OS memory management system from accessing
the allocated regions. This allows Palacios to completely
avoid any and all overheads associated with the host OS’s
memory management architecture. Next the large and con-
tiguous memory regions are exposed to a Lightweight Kernel
running inside a VM context. Due to the fact that memory
is allocated in large contiguous chunks, Palacios can ensure
the use of large page support in the underlying shadow or
nested page tables. In fact, in many scenarios, our approach
would be able to use large 1GB page table entries when they
become available on future architectures. After Palacios has
exposed the large preallocated memory region to the VM,
the lightweight guest kernel is able to manage the memory
directly with minimal overhead and so provides a very low
overhead memory management layer to the running appli-
cation.

Our architecture has several advantages over existing ap-
proaches. First, our system is capable of providing larger
contiguous memory regions to an application than is possi-
ble in CNL. At minimum our memory blocks are available in
128MB contiguous regions, and generally quite a bit more.
This is in contrast to the 2MB maximum available in Crays
CNL. Second, our architecture is capable of allocating these
memory regions dynamically at run time, unlike ZeptoOS
which requires memory reservation at machine boot time.
This means that when a Palacios VM is not running, the
entire system memory is available for the host OS to use in
any way it wishes. And finally, we are able to deliver these
large allocations using existing Linux kernel features and so
require no modifications to the Linux host OS.

3.2 OS Noise
The second technical issue with Linux that we address is

OS noise. Generally speaking Linux is often considered to be
a noisier environment than an LWK, which has implications
for application performance. Palacios’ approach to noise
minimization is similar to that of memory management in
that it bypasses the host scheduler as much as possible to
control noise levels. The current version of Palacios achieves
this in a rather simple way that nevertheless is capable of
reducing the latent noise of the host kernel when running a
VM. Palacios achieves this by 1) directly controlling when
the Linux scheduler is able to run, and 2) taking advantage
of a tickless host kernel in order to avoid frequent timer
interrupts.

2The standard hot pluggable block size is 128MB, and con-
tiguous blocks are generally readily available on a reasonable
system configuration

4. EVALUATION
In this section we evaluate the Palacios VMM architecture

in the context of a commodity Linux kernel. The purpose of
our experiments is to evaluate whether Palacios can provide
superior performance to the native Linux host environment
when coupled with an LWK. For our experiments we focused
on two microbenchmarks that directly measure memory per-
formance and OS noise characteristics. In addition we ran
two other benchmarks that are more representative of a typ-
ical HPC application. We now describe our experimental
setup, methodologies, and results.

4.1 Experimental Setup
For our experiments we ran each benchmark on a dedi-

cated Dell R415 server configured with two 6-core Opteron
4174HE CPUs and 16GB of memory. The memory layout
consisted of 2 NUMA zones equally shared between the sock-
ets with memory interleaving disabled. Each benchmark was
executed 10 times with 1, 2, 4, and 8 threads each running on
a separate core. For the 1, 2, and 4 thread runs the applica-
tion was tied to the same NUMA node; for the 8 thread runs
the application threads were split evenly across the NUMA
zones. We ran each benchmark in 4 different software config-
urations: native Linux without any optimizations (lnx), na-
tive Linux with NUMA aware processor bindings (lnx-opt),
native Kitten (lwk), and Kitten executing inside a Palacios
VM on the native Linux OS (v3vee). Each configuration
used explicit CPU assignments with the exception of the de-
fault Linux environment (lnx). Our virtual machine image
was configured with 1GB 3 of memory implemented using
nested page tables with large page support enabled. The
multicore benchmarks were implemented using OpenMP for
shared memory. The host Linux kernel was an unmodified
stock kernel from Fedora 15 (2.6.40.6-0.fc15.x86 64) with the
NO HZ option enabled for tickless operation. The versions
of Palacios and Kitten were taken from their respective Re-
lease 1.3 versions. It should be noted that we view these
results as preliminary and part of a feasibility study. In par-
ticular, the benchmarks used shared memory and were not
configured to be NUMA aware, causing occasional anoma-
lous behavior when executing across NUMA zones.

Methodology.
While our evaluation is limited to a commodity Linux ker-

nel, we contend that it is still useful in providing insight
into our system. As stated earlier, access to CNL is fairly
restricted and so we were not able to experiment directly it.
It should also be noted that our goal is to isolate a VM’s per-
formance with Palacios from a given host OS and show that
superior performance is possible in this configuration. Based
on this, the use of a commodity kernel could be viewed as the
worst case scenario for our system since there are presum-
ably a larger amount of overheads and noise present. Again,
the goal of this evaluation is to show we can deliver perfor-
mance to a virtualized LWK that is comparable to its native
performance. As such, the specific Linux version should not
matter too much as long as its performance does in fact
diverge from the LWK. Additionally, the use of microbench-
marks presents a fairly common case that commodity Linux

3At the time of submission, issues arose when creating larger
virtual machines. We have since successfuly launched virtual
machines with up to 4GB of memory

has been specifically optimized for.
An additional limitation of our evaluation is the fact that

we were not able to perform a multinode scaling study. This
was due to numerous issues such as the lack of support in
Kitten for our network devices as well as the lack until re-
cently of passthrough device support in Palacios when run-
ning on Linux. Nevertheless we believe that our results still
validate our earlier claims that Palacios is capable of pro-
viding better memory performance with a lower noise profile
than the host kernel.

For each benchmark we calculated not only the average
performance but its standard deviation. The reason for this
is that consistent per node performance has often been asso-
ciated with superior scalability in large scale supercomput-
ing environments, as most applications execute in lock step
and must wait for the slowest node to complete.

We are currently exploring how to perform the same set of
benchmarks using a CNL based host, and intend to provide
these results in future work.

4.2 Benchmarks
As stated previously, we evaluated our approach using two

microbenchmarks that directly measure the aspects of the
system we were trying to optimize: memory performance
and the OS noise profile. These experiments were conducted
using the Stream microbenchmark [9] to evaluate the mem-
ory system performance, as well as the Selfish Detour bench-
mark [2] from Argonne National Laboratories to characterize
the noise profiles. We also ran two other benchmarks that
were more representative of HPC applications: pHPCCG
from the Mantevo Miniapp collection [4] and an OpenMP
enabled HPCCG application acquired from Sandia National
Labs. We will now describe each benchmark and their re-
spective results in more detail.

4.3 Experimental Results
In this section we present the performance results we col-

lected from our benchmark runs.

Stream.
The first priority of our evaluation was to show that our

virtualized approach to memory management delivers supe-
rior performance over that provided by the host OS. In order
to focus our measurements on the memory system directly
we ran the Stream benchmark to collect measurements of
the available memory bandwidth. The stream benchmark
is designed to directly measure the memory transfer rates
provided by the underlying OS and hardware. The Stream
microbenchmark is implemented as a small vector kernel,
which we configured to use ∼500MB of memory.

The results are shown in Figure 2. On average Palacios
was able to provide 400MB/s better memory performance
than native Linux, with an average standard deviation that
was lower by 0.34. In all cases Palacios is able to provide
better or almost equal performance compared to the native
Linux environment. Furthermore, in all cases the virtual-
ized environment provided comparable (and in some cases
significantly better) variance in performance compared to
the native Linux environment.

The results of this benchmark demonstrate that Palacios
can provide better memory performance than native Linux,
and comparable performance in the worst case. This is
largely encouraging since these results were derived from

 0

 2

 4

 6

 8

 10

 12

1 2 4 8

M
em

o
ry

 B
an

d
w

id
th

 (
G

B
/s

)

Number of Cores

lnx
lnx−opt
lwk
v3vee

Figure 2: Average memory bandwidths for the Stream benchmark

Mean / Stdev
Configuration 1 Core 2 Cores 4 Cores 8 Cores
Linux Host (lnx) 5.43 / 0.01 7.71 / 0.10 9.83 / 0.09 8.88 / 1.59
Linux Host with NUMA control (lnx-opt) 5.64 / 0.02 7.73 / 0.07 6.88 / 0.31 8.27 / 0.18
Kitten (lwk) 6.19 / 0.09 8.27 / 0.07 9.62 / 0.57 9.69 / 0.21
Kitten VM on Linux Host (v3vee) 6.10 / 0.03 8.22 / 0.08 9.89 / 0.10 9.21 / 0.13

Figure 3: Data for the Stream benchmark

a common memory microbenchmark and so probably repre-
sent the most optimized code path for each system.

Selfish.
The second priority of our evaluation was to determine

whether Palacios was capable of providing a superior noise
profile over Linux. To achieve this we ran the Selfish Detour
benchmark [2] from Argonne National Laboratories. The
selfish benchmark is designed to execute a very tight con-
trol loop that measures and detects any interruptions of the
benchmark’s execution. As such it detects sources of noise
that could negatively impact application performance. For
this benchmark we ran selfish on native Linux, native Kit-
ten, and virtualized Kitten.

The results of this benchmark are shown in Figures 4-6.
Each figure shows disruption events as a scatter plot with
their duration corresponding to the Y-Axis. While there is a
fair amount of low level noise for both the native Linux and
virtualized Kitten configurations, Figure 4 shows that the
native Linux environment clearly exhibits increased noise as
a result of the kernel’s 100HZ periodic timer. The timer acti-
vation is a result of the application’s execution, regardless of
the fact that Linux was configured to be tickless. The han-
dling of these timer events take on average 20 microseconds.
In comparison, the noise profile of Palacios demonstrates a
much lower number of periodic interrupts. In fact, as shown
in Figure 6, the timer interrupts that do occur are the result
of the 10HZ periodic timer inside the Kitten guest kernel,

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
v
e
n
t

d
u
ra

ti
o
n
 (

m
ic

ro
se

co
n
d
s)

Elapsed time (s)

"lnxplot.dat"

Figure 4: Linux OS noise in the Selfish Detour
benchmark

as can be clearly seen in Figure 5. These results show that
Palacios can isolate the noise of a Linux host kernel such
that it is prevented from interfering with a virtual machine
environment.

It should be noted that while Palacios does appear to be
capable of isolating the inherent noise of a host Linux ker-
nel, there is a greater degree of low level noise in the virtual
environment. On average the background interruptions ex-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
v
e
n
t

d
u
ra

ti
o
n
 (

m
ic

ro
se

co
n
d
s)

Elapsed time (s)

"lwkplot.dat"

Figure 5: Native Kitten noise in the Selfish Detour
benchmark

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
v
e
n
t

d
u
ra

ti
o
n
 (

m
ic

ro
se

co
n
d
s)

Elapsed time (s)

"v3veeplot.dat"

Figure 6: Kitten VM on Linux Host noise in the
Selfish Detour benchmark

perienced by Palacios take 35 microseconds longer to handle
than the background noise in Kitten. We note that the rea-
son for this is most likely due to the exit and event handling
of the virtual machine monitor. This means that the dura-
tions of the interruptions are likely to decrease as VM exit
and entry latencies continue to decrease.

HPCCG.
Finally, we ran another two benchmark applications in or-

der to measure how well Palacios performs when executing
workloads from more representative applications. For this
evaluation we executed two configurations of the HPCCG
benchmark as found in the Mantevo Miniapp suite. HPCCG
is a simple conjugate gradient solver whose workload is rep-
resentative of many HPC applications. It performs the con-
jugate gradient method to solve a system of linear equations
represented by a sparse (mostly zero-valued) matrix. We
ran two different configurations of this benchmark.

Our first evaluation of HPCCG was configured to use
single-precision floating point types in order to evaluate a
more CPU-intensive task. These results are shown as the
pHPCCG benchmark in Figure 7. In addition, we also
ran HPCCG with a configuration that used double-precision
floating point data types which resulted in a more memory-

intensive workload; these results are shown as the HPCCG
benchmark in Figure 9.

As shown in Figure 7, Palacios provides better overall
application performance than native Linux when execut-
ing from the same NUMA node. However, when execut-
ing across NUMA nodes (the 8 core run) Palacios exhibits
slightly worse performance. It should be noted that for all
cases Palacios’ peformance is considerably more consistent,
which indicates that it is likely to exhibit better scalability.

Figure 9 shows the results of the HPCCG benchmark ex-
periments. This benchmark is significant in that it is the
only experiment in which Palacios performed consistently
worse on average than the native Linux environment. We
note however that the performance difference between Linux
and the Palacios VM is still fairly constrained, and in fact
Palacios was still able to provide performance with less vari-
ation than either Linux configuration. This again bodes well
for the scaling capabilities of a Palacios based environment.

4.4 Analysis
As our evaluation shows, Palacios is indeed capable of pro-

viding superior performance over what can be achieved by a
native environment. Our results clearly show that Palacios
is fully capable of providing an isolated and independent
execution environment for lightweight kernels executing on
top of a Linux based environment. Furthermore, the virtu-
alized LWK is capable not only of bypassing the underlying
resource managers in the host, but also of providing sepa-
rate management layers that provide superior performance.
While these results are still preliminary, they nevertheless
show that our approach is feasible at small scales and could
provide a path for fully exploiting LWK architectures on
Linux based supercomputing systems.

5. FUTURE WORK
We are currently planning on expanding our approach and

investigating the capabilities of Palacios at larger scales, on
actual Cray hardware, and with a CNL host kernel. As
part of this work, we have begun the process of integrat-
ing full passthrough I/O functionality on top of Linux based
systems, which will provide Palacios the ability to provide
high performance I/O capabilities to guest environments.
We note that this functionality will be capable of provid-
ing passthrough I/O to systems that both have and lack an
IOMMU. For non-IOMMU equipped systems we can lever-
age our earlier work with Symbiotic Passthrough [7].

We are also exploring the possibility that our approach
can be readily deployed in a cloud setting, to provide virtual
HPC environments on commodity clouds. Previous work
has shown that deploying HPC applications in the cloud is
often infeasible due to resource contention, noise issues, and
layout problems. We believe that the approaches presented
in this paper will allow us to solve many of these problems,
and make cloud based HPC much more palatable for the
broader HPC community.

6. RELATED WORK
While a fair amount of work has investigated the feasibil-

ity of deploying virtualization on supercomputing platforms
it has always focused on limiting the incurred performance
penalties. Our previous work [7, 8] has focused on incor-
porating the Palacios VMM in a lightweight kernel context,

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8

A
v

er
ag

e
E

x
ec

u
ti

o
n

 T
im

e
(s

ec
o
n
d

s)

Number of Cores

lnx
lnx−opt
lwk
v3vee

Figure 7: Average execution times for the pHPCCG benchmark using single-precision floating point data-
types

Mean / Stdev
Configuration 1 Core 2 Cores 4 Cores 8 Cores
Host Linux (lnx) 14.01 / 0.94 10.92 / 1.75 6.67 / 0.83 4.54 / 0.09
Host Linux with NUMA control (lnx-opt) 13.58 / 0.17 7.96 / 0.31 5.07 / 0.10 4.44 / 0.05
Host Kitten (lwk) 13.40 / 0.06 7.51 / 0.03 5.69 / 0.89 4.36 / 0.02
Palacios + Kitten VM (v3vee) 13.79 / 0.04 7.85 / 0.16 5.03 / 0.08 4.90 / 0.04

Figure 8: Data for the pHPCCG benchmark using single-precision floating point data-types

and demonstrating that virtualization can be both scalable
and exhibit very low overhead. In [10] the authors presented
a light-weight VMM capable of virtualizing the Blue Gene/P
platform running IBM’s CNK. This work had similar goals
in that it sought to provide a compatibility layer to run more
standard OSes on top of a lightweight kernel architecture.
However, we believe that this work is the first to propose the
use of virtualization as a means of improving performance
of a given system for HPC applications. As such, this work
marks a significant departure from earlier work investigating
the feasibility of virtualization.

7. CONCLUSION
While it appears that Linux-derived kernels and environ-

ments are likely to become the underlying operating systems
for future exascale platforms, our work has shown that there
is still a significant role that lightweight kernels can play
in future supercomputing architectures. We have demon-
strated that future exascale systems can have the best of
both worlds. HPC applications that can tolerate the over-
heads can run on a Linux host, whereas those that are signif-
icantly impacted by the overheads can run on a virtualized
LWK. This approach yields a high degree of usability in
that isolated virtual machines can be launched when needed
without requiring the reconfiguration of the entire system.
Furthermore, the Palacios VMM is fully capable of provid-

ing these features for a wide range of Linux kernels while re-
quiring no modifications of the host kernel itself. Our work
is freely available in the latest 1.3 versions of Palacios and
Kitten.

8. REFERENCES
[1] Beckman, P., et al. ZeptoOS project website, http:

//www.mcs.anl.gov/research/projects/zeptoos/.

[2] Beckman, P., Iskra, K., Yoshii, K., and
Coghlan, S. Operating system issues for petascale
systems. ACM SIGOPS Opererating Systems Review
40, 2 (Apr. 2006).

[3] Brightwell, R. Why nobody should care about
operating systems for exascale. In Proceedings of the
1st International Workshop on Runtime and Operating
Systems for Supercomputers (New York, NY, USA,
2011), ROSS ’11, ACM, pp. 1–1.

[4] Heroux, M., et al. Welcome to the mantevo project
home page, https://software.sandia.gov/mantevo.

[5] Kaplan, L. Cray CNL. In FastOS PI Meeting and
Workshop (June 2007).

[6] Lange, J., Dinda, P., Hale, K., and Xia, L. An
introduction to the palacios virtual machine
monitor—release 1.3. Tech. Rep. NWU-EECS-11-10,
Department of Electrical Engineering and Computer
Science, Northwestern University, October 2011.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8

A
v

er
ag

e
E

x
ec

u
ti

o
n

 T
im

e
(s

ec
o
n
d

s)

Number of Cores

lnx
lnx−opt
lwk
v3vee

Figure 9: Average execution times for the HPCCG benchmark using double-precision floating point data-
types

Mean / Stdev
Configuration 1 Core 2 Cores 4 Cores 8 Cores
Host Linux (lnx) 13.62 / 0.23 10.36 / 0.21 6.45 / 0.06 5.36 / 0.06
Host Linux with NUMA control (lnx-opt) 14.11 / 0.39 8.33 / 0.23 5.76 / 0.01 5.43 / 0.55
Host Kitten (lwk) 14.55 / 0.02 8.41 / 0.09 5.95 / 0.01 5.39 / 0.005
Palacios + Kitten VM (v3vee) 14.95 / 0.03 8.61 / 0.15 6.03 / 0.03 5.46 / 0.02

Figure 10: Data for the HPCCG benchmark using double-precision floating point data-types

[7] Lange, J., Pedretti, K., Dinda, P., Bridges, P.,
Bae, C., Soltero, P., and Merritt, A. Minimal
overhead virtualization of a large scale supercomputer.
In Proceedings of the 2011 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments (VEE 2011) (March 2011).

[8] Lange, J., Pedretti, K., Hudson, T., Dinda, P.,
Cui, Z., Xia, L., Bridges, P., Gocke, A.,
Jaconette, S., Levenhagen, M., and
Brightwell, R. Palacios and kitten: New high
performance operating systems for scalable virtualized
and native supercomputing. In Proceedings of the 24th
IEEE International Parallel and Distributed
Processing Symposium (April 2010).

[9] Luszczek, P., Dongarra, J., Koester, D.,
Rabenseifner, R., Lucas, B., Kepner, J.,
McCalpin, J., Bailey, D., and Takahashi, D.
Introduction to the HPC Challenge Benchmark Suite,
March 2005.

[10] Stoess, J., Appavoo, J., Steinberg, U.,
Waterland, A., Uhlig, V., and Kehne, J. A
light-weight virtual machine monitor for blue gene/p.
In Proceedings of the 1st International Workshop on
Runtime and Operating Systems for Supercomputers
(New York, NY, USA, 2011), ROSS ’11, ACM,
pp. 3–10.

[11] Vaughan, C., VanDyke, J., and Kelly, S.
Application performance under different XT operating
systems. In Cray User Group Meeting (CUG 2008)
(2008).

[12] Yoshii, K., Iskra, K., Naik, H., Beckman, P., and
Broekema, P. C. Performance and scalability
evaluation of ’big memory’ on blue gene linux.
International Journal of High Performance Computing
Applications 25, 2 (May 2011).

