
Virtual WiFi: Bring Virtualization from Wired to Wireless

Lei Xia∗, Sanjay Kumar§, Xue Yang§

Praveen Gopalakrishnan§, York Liu‡, Sebastian Schoenberg§, Xingang Guo§

∗ Northwestern University, Department of Electrical Engineering and Computer Science

lxia@northwestern.edu

§ Intel Labs, Hillsboro, OR

{sanjay.k.kumar, xue.yang, praveen.gopalakrishnan,sebastian.schoenberg, xingang.guo}@intel.com

‡ Intel Labs, Santa Clara, CA

yorkliu@hotmail.com

Abstract

As virtualization trend is moving towards “client virtualization”,
wireless virtualization remains to be one of the technology gaps
that haven’t been addressed satisfactorily. Today’s approaches are
mainly developed for wired network, and are not suitable for vir-
tualizing wireless network interface due to the fundamental dif-
ferences between wireless and wired LAN devices that we will
elaborate in this paper. We propose a wireless LAN virtualization
approach named virtual WiFi that addresses the technology gap.
With our proposed solution, the full wireless LAN functionalities
are supported inside virtual machines; each virtual machine can es-
tablish its own connection with self-supplied credentials; and mul-
tiple separate wireless LAN connections are supported through one
physical wireless LAN network interface. We designed and imple-
mented a prototype for our proposed virtual WiFi approach, and
conducted detailed performance study. Our results show that with
conventional virtualization overhead mitigation mechanisms, our
proposed approach can support fully functional wireless functions
inside VM, and achieve close to native performance of Wireless
LAN with moderately increased CPU utilization.

Categories and Subject Descriptors D.4.4 [Software]: OPERAT-
ING SYSTEMS—Communications Management [Network com-
munication]

Keywords Wireless, Virtualization, WiFi, Hypervisor, Perfor-
mance

1. Introduction

Virtualization enables multiple operating systems to run simulta-
neously in isolated containers on a single physical machine and
provides an abstraction layer to separate the underlying hardware
from what the OS inside a Virtual Machine (VM) observes. Virtu-
alization has already been widely adopted in data centers, where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’11, March 9–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0501-3/11/03. . . $10.00

the technology has helped to consolidate servers and dynamically
manage existing resources more efficiently.
The technology is moving towards “client virtualization”, where

a virtual machines run on end users’ devices, from notebooks to
smart phones, providing unification across a plethora of devices and
securing disparate software environments. In particular, enterprise
IT has been one of the driving forces behind this technology. The
ability to provide strong separation between not only personal and
enterprise data but also applications, the operating systems and the
entire security configurations/managements, supports the emerging
“bring your own device” trend without compromising necessary IT
control. Imagine a user brings one’s beloved device to the company
where IT simply drops a corporate virtual machine onto it. On the
device of the user’s choice, IT gets the control necessary over all
corporate data and applications while users retain the same control
for their personal data and applications. The “client virtualization”
trend is evidenced by the rapidly emerging desktop/mobile virtual-
ization solutions on the market [16, 36, 37].
As compelling as client virtualization is, the variety of hard-

ware technologies that are predominantly present in client systems
make it much more complicated than creating server-based technol-
ogy. Wireless virtualization represents one of such major technical
obstacles. Today’s client virtualization solutions typically map all
network connections to a virtual wired 802.3 Ethernet card for sim-
plicity. Using a legacy wired adapter works very well for data trans-
fers but has a major downside for wireless connections: features of
the underlying network infrastructure or the wireless adapter can-
not be controlled from inside the VM and have to be configured and
managed at the level of the Virtual Machine Monitor or the hosting
OS. While such an approach is reasonable in server virtualization,
it doesn’t support mobile and ultra-mobile computing very well.
In these environments, users have high mobility and often connect
exclusively through wireless. They expect sophisticated software
tools to manage their network connectivity based on location, avail-
ability, performance and cost. For example, only if the connection
manager in the VM is aware of changes about wireless link condi-
tions, it could handle the handover between cellular 3G connection
and Wireless LAN connection whenever needed.
IT-managed security using IEEE 802.11 together with 802.1x

certificate based authentication adds another perspective to con-
sider. A network connection is established only if the certificate is
valid and the device is permitted to access the network. The prob-
lem with current wireless virtualization approach is that the VMM

is the only component aware of the wireless network and perform-
ing the authentication with the network. All VM network traffic is
then bridged through the single connection, which gives all VMs
access to the same network. As a result, maintaining a secured cor-
porate environment has to rely on higher layer solutions such as
VPN, which adds cost, connection overhead and increases power
consumption.
In this paper, we propose a wireless LAN virtualization ap-

proach named virtual WiFi that addresses the above two issues.
With our solution, the full wireless LAN functionalities are sup-
ported inside virtual machines; each virtual machine can establish
its own connection with self-supplied credentials. Multiple sepa-
rate wireless LAN connections are supported through one physical
wireless LAN network interface. Our main contributions are as fol-
lows:

• We propose a new approach named virtual WiFi that is suitable
for wireless LAN virtualization.

• We designed and implemented a prototype for our proposed
virtual WiFi approach, and performed detailed performance
study.

• We identified overhead sources for our approach and we show
that with conventional virtualization overhead mitigation mech-
anisms, our proposed approach can support fully functional
wireless functions inside VM, and achieve close to native per-
formance of Wireless LAN with moderately increased CPU uti-
lization.

The rest of the paper is organized as follows: Section 2 discusses
the basics of the wireless LAN and contrasts them with wired
networks. Section 3 presents our proposed virtual WiFi approach.
Section 4 describes our prototype implementation based on the
Linux Kernel Virtual Machine (KVM). We discuss the details of
our performance study in Section 5 followed by the related work
in Section 6. We conclude the paper and present our future work in
Section 7.

2. Wireless LAN vs. Wired LAN

Wireless networks have fundamental characteristics that make
them significantly different from traditional wired LANs. While
a wired LAN device must be physically attached to the wire in or-
der to communicate, wireless devices communicate with each other
via electromagnetic wave that has no visible boundaries. Any con-
formant device with reasonable signal reception can share the air
medium and establish its own communication link. In the design
of wired LANs, it is implicitly assumed that an address is equiv-
alent to a physical location. On the other hand, in wireless LAN,
the addressable unit is a station (STA), where each STA indicates a
message destination and is not associated with a particular location.
We describe Wireless LAN in more details below to facilitate

deeper understanding of the differences between wireless LANs
and wired LANs. IEEE 802.11 defines the wireless LAN (WLAN)
standard. Throughout this paper, we use “WiFi”, “WLAN” or
“wireless LAN” interchangeably. The basic service set (BSS) is
the basic building block of an IEEE 802.11 WLAN, where two
types of BSS: the infrastructure BSS and the independent BSS
(IBSS), are defined. Within an infrastructure BSS, member STAs
communicate via a central Access Point, while within an IBSS,
two STAs can communicate with each other directly. The widely
deployed WLAN systems are primarily infrastructure BSS, which
will be the focus of this paper. Figure 1 illustrates a WLAN system
that can consist of multiple Basic Service Sets. Each Basic Service
Set has a limited coverage since electromagnetic wave signal will
be attenuated as it propagates through space, which constraints the

range a wireless device can directly communicate with. Multiple
BSSs provide extended coverage.������� �������������	
�� ������	
��

Figure 1. WLAN system with multiple BSSs

WLAN systems primarily operate in two unlicensed radio fre-
quency bands: 2.4 GHz band and 5 GHz band. There are 14 chan-
nels designated in the 2.4 GHz band and 42 channels designated in
the 5 GHz band1. When powered on, a WLAN STA will scan the
available channels to discover active networks where Access Points
are present. Once the STA has found an Access Point and decided
to join its BSS, it will pursue becoming a member of the BSS.
A STA’s membership in a BSS is dynamic as the STA turns on,

turns off, moves within range, or moves out of range. To become
a member of a BSS, a STA needs to authenticate itself, synchro-
nize with the Access Point and become associated with the BSS.
IEEE 802.11 Authentication and Association occur at the Access
Point prior to any upper layer authentication (e.g., IEEE 802.1X
link-layer network authentication). IEEE 802.11 Authentication re-
quires that a STA establishes its identity before sending frames,
where Open System Authentication uses the STA’s MAC address
as authentication identify, and Shared Key authentication supports
several different shared key authentication mechanisms.
Once authentication has completed, stations can associate with

an AP to access all services of the BSS. Association is logically
analogous to plugging a cable into a wired network and it allows the
AP to record each STA so that frames may be properly delivered.
Only after the association process is completed, a station is capable
of exchanging data frames with the access point.
A defining characteristic of the wireless channel is the variation

of the channel condition over time and over frequency. In addi-
tion, a wireless device can experience significant interference from
various sources. As a result, complex management functions have
been used for WLAN radios in order to achieve efficient and re-
liable communication. Such management functions often involve
the device driver2 for control and configuration, which makes them
important to consider when designing a solution for WiFi virtual-
ization. Examples of such management functions include:

• Rate adaptation: Data streams at WLAN device are modulated
and transmitted over the air at a certain rate. IEEE 802.11 man-
dates multiple transmission rates (e.g., 802.11g supports twelve
rates from 1 to 54 Mbps). Higher data rates are commonly
achieved by more efficient modulation schemes, which typi-
cally require a stronger signal to decode. In wireless networks,
path loss, fading, and interference often cause variations in the
received signal quality, which in turn, cause variations in the
accuracy of decoding given a modulation scheme. A trade-off

1Depending on the regulations, the specific channels allowed in different
countries may vary.
2 The WLAN MAC software is typically divided into two entities: µCode
run by a real-time micro controller on the WiFi device and a device driver
that is part of the host operating system.

generally emerges: the higher the data rate, the higher the prob-
ability of receiving errors. Rate adaptation is the process of dy-
namically switching data rates to match the channel conditions
with the goal of selecting the rate that will give the optimum
throughput under the present channel conditions.

• Power management: Mobile devices with WLAN radio usually
have a limited energy budget constrained by battery life. On the
other hand, the shared channel access nature of IEEE 802.11
forces wireless STAs to continuously listen to the channel to
determine its current status. As a result, a mobile device using
WLAN radio would drain its battery very quickly. IEEE 802.11
standard provides power save modes to reduce the time required
for a station to listen to the channel. The device driver can
control how long and how often the radio needs to be on.

• Power control: Transmit power of WLAN devices affects many
aspects of the underlying wireless network. It determines the
range of a transmission, the quality of the signal received at
the receiver as well as the magnitude of interference it causes
to other receivers. The typical goal of power control is to set
the transmit power of a WLAN device to the lowest possible
level that is still compatible with the quality of the desired
communication.

The above brief introduction of Wireless LAN provides a
glimpse into the complexity of the Wireless LAN device, espe-
cially on the complexity of WLAN management functions. Com-
pared with wired LAN devices that involve mainly data centric
operations, their differences primarily lie in the following aspects:

1. There is a range of complex management functions that affect
the fundamental functionalities of wireless LAN devices. The
device driver is generally involved in many of those manage-
ment decisions for the WLAN device to have acceptable per-
formance. On the contrary, wired LAN devices are data centric
and have very little management functions.

2. Wireless STA is not constrained by the physical location or
the number of available network plugs. Inherently, multiple
wireless links can be setup from one mobile device without
the Access Point knowing that multiple wireless links originate
from the same device.

3. Wireless LAN throughput is not bounded by the platform’s
I/O bandwidth. Rather, it is bounded by the wireless channel
capacity. Additionally, due to the distributed channel access and
dynamic nature of the wireless link, the channel utilization ratio
is typically less than 50%. The achievable throughput to date is
generally less than 20 Mbps for 802.11a/g (peak channel rate
is 54 Mbps) and less than 200 Mbps for 802.11n (peak channel
rate is 450 Mbps) [15].

3. Wireless LAN Virtualization

3.1 Limitations of current virtualization approaches

Today’s network interface virtualization techniques can be catego-
rized as either software or hardware based approaches. The soft-
ware based approach is shown in Figure 2(a), where the VMM
implements the virtualization functions in software [10, 35] to
support virtual network interfaces for multiple guest VMs. The
VMM establishes the actual network connection using the plat-
form’s physical NIC and then bridges the connection to multiple
virtual machines. In many implementations, the selected virtual
network card is a legacy ethernet card for simplicity, and the guest
OS inside the VM uses the standard off-the-shelf ethernet device
driver. In some other implementations, the para-virtualized driver
will be used in the guest OS for function/performance enhance-
ments.

The second approach focuses on providing hardware virtualiza-
tion support on the NIC device itself. In particular, Single Root
I/O Virtualization (SR-IOV) [29] provides a standard mechanism
for devices to advertise their ability to be simultaneously shared
among multiple virtual machines, and it allows for the partition-
ing of a PCI function into a set of virtual interfaces. As shown in
Figure 2b, a SR-IOV enabled NIC device presents multiple virtual
interfaces (VIF) and the VMM can directly assign a VIF to a spe-
cific virtual machine, hence drastically reducing the performance
penalty of high-bandwidth network cards such as 10Gbit Ethernet.

Device Model Device Model

Bridging Function
Module VMM

VM2VM1

Wireless
NIC driver

Wireless NIC

Guest
driver

Guest
driver

(a) Software-based approach (b) Hardware-based approach

Figure 2. Existing network interface virtualization approaches

Existing approaches are primarily developed for wired network
interface, and are not suitable for virtualizing wireless network in-
terface due to the fundamental differences between wireless LAN
and wired LAN devices we elaborated in Section 2. More specifi-
cally, the limitations of the 802.3-based emulation approach come
from its difficulty to support Wireless LAN management functions
inside the VM. IEEE 802.11 is required to appear to higher layers
(logical link control (LLC)) as a wired IEEE 802 LAN. This re-
quires IEEE 802.11 to incorporate functionality that is untraditional
for MAC sublayers, in order to meet reliability assumptions and to
handle QoS traffic in a manner comparable to wired LANs. In other
words, IEEE 802.11 MAC functions is a super set of 802.3 MAC
functions, and many management functions will get lost when em-
ulating IEEE 802.11 device as 802.3 device.
Using a para-virtualization approach and have the VMM vendor

supply the para-virtualized driver is technically possible. However,
given the WLAN management functions are complex and the man-
agement interface between host driver and wireless LAN device is
often proprietary, the reality is that VMM vendor would only pro-
vide the smallest common denominator of many wireless network
cards. Any vendor specific feature or software component that pro-
vided additional benefits would not be possible inside the guest.
Hardware based virtualization approach provides virtualization

support at NIC device, where the limitations mainly lie in the
cost and complexity – validation and consolidation of management
commands from multiple VMs have to be implemented on the de-
vice. Due to the wide range of management functions a WLAN de-
vice has to support, hardware based virtualization mechanism such
as SR-IOV would significantly increase the complexity and cost of
wireless NIC. As we mentioned before, wireless LAN throughput
is not bounded by I/O bandwidth, given the best achievable wireless
LAN throughput is less than 200 Mbps to date. As such, hardware
based virtualization mechanisms do not add any additional value in
boosting the data I/O bandwidth.

3.2 virtual WiFi: Proposed Wireless LAN Virtualization
Architecture

In this paper, we propose a wireless LAN virtualization architecture
shown in Figure 3 that takes a combined approach of software
and hardware. The goal is to support native wireless LAN drivers
inside guest VMs and allow each VM to establish its own wireless
connection, all with minimum wireless LAN device changes. The
desire to pass on the benefits of the various functions provided in a
particular wireless network card leads to the approach of exposing
to the guest VM the very same network card as the physical WiFi
card. This is contrary to the desire to using Virtualization for a
full abstraction of the underlying hardware. However, a similar
approach has been taken with SR-IOV and we argue that such
an approach is more suitable than the full device abstraction for
wireless devices given their management-intensive nature.

Device Model Device Model

VMM

VM2VM1

Wireless

NIC driver

PHY

vMAC 1 vMAC2

Virtualization Augmented Wireless NIC

Management Function Control

VR 1 VR2

Virtualization Augmented Wireless Driver

Access Point 1
Access Point 2

VM-ID: 1 VM-ID: 2

Host

Device

Wireless

NIC driver

Figure 3. Proposed architecture for virtualizing WLAN network
interface

We introduce the concept of assisted driver direct execution
(ADDE), where an augmented wireless LAN host driver—residing
either in a driver domain of a type I hypervisor or in the Host OS in
case of a type II hypervisor—takes the primary role in supporting
the management functions of the virtualized wireless interfaces.
At the same time, some commands (e.g., TX command for data
transmissions) will be directly passed on to wireless LAN device
for execution. Since the virtual Wireless LAN devices exposed to
the guest VMs are the same as the physical wireless LAN device,
the commands issued by the guest VM drivers are understandable
by the physical device. The augmented host driver can forward
those commands to wireless LAN device without incurring any
translation overhead.
Inside the virtualization augmented wireless NIC, virtual Wire-

less LAN interfaces are separated at MAC layer. As shown in Fig-
ure 3, multiple virtual MACs may be active and they share the
common wireless physical layer via time domain multiplexing. As
we mentioned previously, wireless STA is not constrained by the
physical location. When multiple virtual MACs are running, each
of them can initiate the authentication/association procedures, and
setup its connection with an Access Point. From the view of the Ac-
cess Point, it would not know that those wireless LAN connections
are associated with virtual Wireless LAN interfaces located on the
same device.

Given that the device-specific virtual wireless functions are pro-
vided by the augmented wireless driver and the wireless NIC, the
VMM itself now only needs to emulate standard PCI config and
MMIO space functions in its device model to expose a wireless
network card into the guest. Such an architecture choice enables
wireless vendors to provide their own wireless virtualization so-
lutions and to show value differentiations, with minimum depen-
dence on VMM software. Additionally, such an architecture choice
allows the device model owned by VMM vendors to be agnostic
to changes of the driver-µCode interfaces owned by WiFi device
vendors.
Since the device model exposes the same device as the physical

wireless interface to the VM, the guest OS inside the VM will load
the card’s native driver. Once the device model receives commands
from the guest’s driver, it will tag the commands with a VM-ID
specific for each guest VM. Functional commands issued by a
VM device driver will be forwarded by the device model to the
augmented host driver. The device model is also responsible for
injecting interrupts into the guest if needed.

3.3 Virtualization Augmented Wireless LAN Device

A typical Wireless LAN device consists of the RF transceiver that
performs RF signal transmitting/receiving; the baseband section
that operates at a lower frequency range and performs mainly
digital signal processing; and the MAC portion that deals with link
establishment, security, channel access mechanism, etc. Baseband
and RF sections are generally referred to as physical layer (PHY)
and the MAC layer runs on top of the PHY. The MAC portion
often consists of a real-time controller on the device with associated
µcode software, as well as the driver running on the host computer.
As we mentioned previously, virtual wireless LAN interfaces are
separated at the MAC layer.
The concept of having two MAC entities sharing the same PHY

to function as two wireless interfaces in a non-virtualized envi-
ronment has emerged in the wireless industry recently. It is driven
by usage cases of supporting WiFi peer-to-peer connections while
connecting to an infrastructure access point at the same time using
a single WiFi radio. There, one MAC entity operates in the stan-
dard client wireless LAN (STA) mode to connect to an access point
for Internet access, while the other operates as a software access
point to manage a wireless personal area network (streaming video
to a TV equipped with WiFi using the peer-to-peer connection, for
example). Commercially available products include Intel My WiFi
Technology [20], Atheros Direct Connect[9], and Marvell Mobile
Hotspot [17]. Building upon such technology feasibility, we further
expand it to support wireless virtualization in virtualized environ-
ments, where multiple MAC entities will operate in STA mode and
will maintain their independent associations with corresponding ac-
cess points.
The reason that multiple MAC entities sharing the same PHY

can function as separate wireless interfaces is due to the broadcast
nature of the wireless link. As long as the RF transceiver is tuned to
a particular channel, it can transmit/receive packets on that channel.
In the case where all virtual MACs operate on the same channel,
the RF transceiver just need to stay on that channel and receive all
packets. Irrelevant packets can be filtered out using MAC filters to
save power and computing cycles. It is MAC layer’s responsibility
to identify a packet based on the BSS ID and source/destination
MAC addresses. If different virtual MACs need to operate on dif-
ferent channels, then careful time-multiplexing scheduling across
virtual MACs needs to be done to make sure each vMAC main-
tains synchronization with the corresponding access point, and it
listens to the channel at the right time for intended traffic. De-
tailed scheduling algorithms specifically for multi-channel opera-

tions concern specific details of IEEE 802.11, which is out of scope
of this paper.
Each virtual MAC will have a separate MAC address. The

µCode on the network card will maintain information/state per con-
nection associated with a VM-ID, which includes the access point
MAC address, STA MAC address, data rates supported by the ac-
cess point, operating channel, security credentials, rate scaling ta-
ble, etc. More specifically, on the receiving path, with properly con-
figured MAC filters, packets associated with all virtual MACs can
reach the MAC layer. The µCode then determines the correspond-
ing VM-ID based on destination MAC address, and program the
hardware with appropriate parameters such as security method in
use and corresponding security key to decrypt the received packet.
The decrypted packet is then tagged with the appropriate VM-ID,
and sent to the augmented host driver, which will in turn, route the
packet to the corresponding VM.
On the transmission path, the augmented driver communicates

directly with the card’s µCode. Handling of the data transmission
command is straightforward and the augmented driver passes the
TX command that was tagged with the VM-ID by the device model
directly to the card. The µCode then looks up the information/state
associated with this VM-ID and applies the corresponding secu-
rity key to encrypt the packet in case of an encrypted connection.
The encrypted packet will then be transmitted over the air with the
modulation rate, power and antenna configurations associated with
this connection. Handling of management commands is more in-
volving. As guest drivers from multiple VMs can issue independent
commands, they can potentially conflict with each other (e.g., one
VM likes to turn off the wireless LAN device while other VMs are
still using it). To resolve such a conflict, µCode maintains per-VM
data structures to keep VM specific states isolated from each other.
A guest driver can modify its own state, but any command that af-
fects the operation of the entire wireless NIC is carefully handled
at the augmented driver to ensure consistent isolation among VMs.
Several commonly used management commands are elaborated be-
low.
Device initialization. Initialization command is used to bring

up the PHY and set up all parameters needed for an association,
such as band selection, channel selection, transceiver chain config-
urations, security method, BSS ID, etc. Each VM WiFi driver may
independently issue device initialization commands. If one VM is
actively using the WiFi device while another VM issues device ini-
tialization command, µCode needs to make sure that PHY setting
of the active connection will not be affected. Additionally, the de-
vice initialization command should trigger µCode to start a new
vMAC, and start maintaining state/information related to the new
vMAC.
Scan request. Scan request command is issued by WiFi driver

to request the WiFi device to search for all available channels to
discover active networks where access points are present. Each VM
WiFi driver can independently issue scan request commands. If one
VM is actively using theWiFi device while another VM issues scan
request, the augmented host driver needs to consolidate function re-
quests from both VMs and set proper scan request for the µCode
to execute. More specifically, the scan request is characterized by
how often the WiFi device needs to switch to an unknown chan-
nel to search for available access points (i.e., Scan Interval), and
how long it will stay on that channel for each scan attempt (i.e.,
Scan Duration). Depending on traffic amount of the active VM, the
augmented host driver may need to set the Scan Interval and Scan
Duration differently fromwhat is requested by the guest VM. Alter-
natively, the augmented driver can also return the previously stored
scan results directly to the VM without passing scan command to
µCode, if the available scanning results were just recently obtained.

Power save command. Power save request is issued by WiFi
driver to control how long and how often the WiFi radio needs to
be on to save power consumption while maintaining the active con-
nection. It sets sleep interval to allow the WiFi radio to go into low
power mode. When different VMs issue power save commands,
the augmented driver needs to consolidate these requests and de-
termine a sleep schedule that satisfies the connection and traffic
requirements of all VMs. Only one consolidated power save com-
mand will be passed down to the µCode for execution.
Rate control command. The WiFi driver can adaptively choose

a set of suitable rates for the WiFi radio to be used, based on packet
transmission/failure histories and based on channel feedbacks from
the µCode. If a guest VM issues the rate control command, such
a command should be passed down to µCode, where the µCode
should only update the rate table associated with the specific VM-
ID.
TX power control command. WiFi driver can specify TX power

that should be used for a particular channel or modulation rate.
When a guest VM issues the TX power control command, such
a command should be passed down to µCode, where µCode should
only update the TX power table associated with the specific VM-
ID.
In some cases, µCode on theWiFi device needs to send manage-

ment feedback up to the WiFi driver. Such management feedback
may be delayed responses to a command that was originally issued
by a VM, or it may be statistical information on packet error rate,
the number of retransmissions performed for each packet, etc. The
augmented host driver is responsible for routing those management
feedbacks to the appropriate VM.

4. Prototype Implementation

We have implemented the virtual WiFi prototype in KVM (Kernel-
based Virtual Machine). The core part of KVM [3, 21] is a Linux
module that enables the Linux OS to function as a VMM. In KVM,
VMs run as normal Linux processes. Since all physical pages of
a VM are mapped into the process’s user virtual memory space,
the physical memory of the VM can be accessed easily when the
VM process is in user mode. KVM takes advantages of hardware
virtualization support such as Intel VT [6] or AMD-SVM [8] to
achieve efficient virtualization of CPUs and memory.
The KVM can specify on which I/O ports the requests from

VM need to be intercepted. Whenever an IO request to these ports
happens in VM, a VM exit happens and processor switches control
from guest to KVM. In KVM, the I/O request is redirected to a user
mode device emulator called QEMU [11, 12], which is utilized by
KVM to provide virtual device models to VMs.
Figure 4 shows the overall architecture of our virtual WiFi pro-

totype implementation, which consists of three main components.
The first is the virtual WiFi device model, which is implemented
inside QEMU device model layer, responsible for exposing the vir-
tual WiFi interface to the VMs. The second one is the Virtualization
augmentedWiFi device driver running in the host Linux kernel. The
third one is the Virtualization augmented WiFi NIC, which involves
only the µCode changes on theWiFi device. We will elaborate each
of the three components in the virtual WiFi prototyping system in
the following subsections.

4.1 Virtual WiFi Device Model

The prototype implements an Intel WiFi device model which works
for both Intel’s 5000 and 6000 series WiFi cards. Each VMM
that supports virtualization of WiFi device through virtual WiFi
approach will implement its own version of the virtual WiFi device
model. The virtual WiFi device model virtualizes the PCI config
and MMIO accesses itself, while forwarding all WiFi function
commands to the augmented driver for processing. All IO requests

Q e m u G t O SQ e m u G u e s t O SN a t i v e W i F i D r i v e rV i r t u a l W i F iD e v i c e M o d e l A p p l i c a t i o nH o s t K e r n e lD e v i c e M o d e l A p p l i c a t i o nK V MA u g m e n t e d W i F i D r i v e rW i F i D e v i c eN C o d e W i F i D e v i c eN C o d e
Figure 4. Virtual WiFi Prototype implementation based on KVM

from guest WiFi driver are intercepted by KVM and delivered to
the virtual WiFi device model, which then hands these requests to
the augmented host WiFi driver.
During initialization virtual WiFi device model establishes an

ioctl interface to the augmented host driver, and uses this inter-
face to allocate a new VM state inside the driver. For all com-
mands/packets sent by guest WiFi driver, the device model tags
them with host driver allocated VM-ID and deliver them to the
augmented host driver via the ioctl interface. For received packet
or incoming interrupt from physical WiFi NIC, the augmented host
driver signals the device model about the availability of a packet
or an interrupt. The device model retrieves the received pack-
ets/interrupts via an ioctl call. If the received packet is valid, device
model enqueues it in the guest WiFi driver queue and injects an
interrupt into the guest OS for further processing.

4.2 Virtualization Augmented Host Driver

The virtualization extension is added to the default “Intel Wireless
WiFi” driver in Linux kernel release 2.6.33 [4] that works for both
Intel’s 5000 and 6000 series WiFi cards. The extension implements
an IOCTL interface to interact with device model inside QEMU.
On the transmission path, when the augmented driver receives a
command from the device model, it either virtualizes the command
locally, or validates the command and inserts it into the physical
WiFi driver transmission queue (data or control queue). On the
receiving path, when receiving a packet from wireless device, it
examines the VM-ID associated with the packet to identify the
intended receiver. It then signals the corresponding device model
which wakes up from a waiting poll to pick up the packet.

4.3 Virtualization Augmented WiFi NIC

The µCode handles time critical MAC operations. The virtualiza-
tion extension is added to WiFi µCode of both Intel’s 5000 and
6000 series WiFi cards. Both Intel’s 5000 and 6000 series WiFi
cards have Intel MyWiFi technology enabled, so the NIC hardware
is capable of handling at least two virtual MACs. Configuration,
connection status and state machine are maintained separately for
each virtual MAC. Control/data messages to/from each vMAC will
be tagged with different VM-ID so that they can be differentiated
by the augmented host driver.

µCode changes made in our prototype are as follows. When a
new virtual machine is initiated, a mapping table is created to map
VM-ID with the virtual MAC, and configure the hardware filtering
policy to allow packets targeted to this virtual MAC to be received.
On the receiving path, VM-ID is identified based on the received
packet’s MAC addresses and the packet is tagged with the VM-

ID before sending it to the host driver. On the TX path, command
response is generated after completing the command execution.
The command response is also tagged with VM-ID before sending
it to the host driver. The security keys are maintained in a unified
security table, which is indexed by the combination of connecting
access point and the virtual MAC address.

4.4 Address Translation

Typical device models copy TX packets from the VM’s memory
and send them to host networking stack for transmission. However,
since virtual WiFi device model has a direct interface to host driver,
it can avoid the extra copy for transmission packets. Once virtual
WiFi device model receives a TX command from the VM that con-
tains the guest physical address (GPA) of the packet buffer, the de-
vice model requests VMM to convert the GPA to host physical ad-
dress (HPA) instead of copying the packet from the VM’s memory.
After the GPA in the TX command being replaced with the HPA,
the TX command is sent to the wireless NIC by the host driver
for actual transmission. The wireless NIC performs the DMA op-
eration using the HPA, copying the packet directly from the VM’s
memory to avoid extra memory copy.
It was observed that address translation by the VMM in soft-

ware causes significant CPU overhead. Thus one optimization is
to exploit the address remapping hardware support present in the
platform, such as Intel VT-d [6] or AMD IOMMU [8]. We imple-
mented both software-based and hardware-assisted address trans-
lation in our virtual WiFi prototype for performance analysis. The
hardware-assisted address translation is based on Intel VT-d in our
implementation. VT-d hardware is typically used to support assign-
ment of a single device to only one address domain (and hence only
one VM). That is, only one VT-d context entry can be assigned for
each PCI device. The GPAs used by a device in DMA requests
are mapped to HPAs through the VT-d remapping table pointed by
the device’s VT-d context entry. On the other hand, in our virtual
WiFi system, one physical wireless NIC has to be shared by multi-
ple VMs, which will require one remapping table for each VM that
shares the physical device. Virtual WiFi implements an approach
that enables VT-d to support multiple address domains within a
single VT-d context entry, by merging multiple VT-d tables into a
single VT-d table.
The approach we implemented is based on the fact that current

VT-d table has much larger physical address space than the physical
memory available to each VM. Therefore a number of high order
bits in GPAs will remain un-programmed in typical usages. We can
partition the VT-d table into multiple chunks in a way that each
chunk contains mappings for one VM. For example, if the VT-d
hardware supports mapping up to 512 GB memory address space
(39 bits long, 3-level page table), we can divide the address space
into 16 chunks with each chunk supporting up to 32GB address
space. In this way, VMM creates a merged VT-d table where each
chunk represents the unique remapping sub-table for each VM.
During a VM’s initialization, the virtual WiFi device model

requests the VMM to add the VM’s VT-d table into the merged
VT-d table used by the device. The VMM selects the chunk location
corresponding to the VM-ID and copies the top-level entries from
the VM’s table into the merged table. Using the same example as
above, 32 top-level entries will be copied from the VM table to the
merged VT-d table at chunk location 1 if the VM-ID is 1. When the
virtual WiFi device model receives commands from guest driver,
the device model integrates the VM-ID into the higher order bits
(bits 35–38 in this example) of the GPA present in the command.
When the command is sent to the wireless NIC, the device uses
the VM-ID tagged GPA for DMA request, which will lead to GPA
being translated to HPA using the correct chunk corresponding to
the VM in the merged VT-d table.

5. Performance Evaluation

The goal of our performance analysis is to understand whether our
proposed virtual WiFi architecture is an applicable approach for
wireless virtualization. More specifically, we would like to under-
stand, in comparison with nativeWiFi, is there anyWiFi throughput
or latency penalty; what is the CPU utilization by wireless virtual-
ization; what are the major overhead sources forWiFi virtualization
and what are the effective mitigation mechanisms.
To measure the UDP goodput, we used IxChariot [2] net-

work benchmarking tool. The IxChariot tools contain both Con-
sole and Performance Endpoint programs. Performance Endpoints
are installed at the source and destination points of a test to per-
form packet transmissions and receptions. The Console program
configures the test, loads the test scripts to Endpoints and col-
lects/processes test results. In our test setup, the Performance End-
points run on the two test machines and the Console program runs
on a separate management machine. The separation of management
console from test machine allows us to isolate the CPU usage by
Console program from the CPU usage due to WiFi traffic generated
by the EndPoint 3.
To isolate the test management traffic (e.g., loading test scripts

or gathering test results) from the testing traffic, the management
network and the test network are separated into two different sub-
nets. The primary test machine on which VM and virtual WiFi will
be running connects with an access point via WiFi. The other end
of the tested data connection is a machine running native Linux and
connects to the access point via Ethernet. As such, a packet from
the primary test machine will go through the WiFi link to reach the
access point, which will then route the packet to the peer test node
through Ethernet. As theWiFi link is the bottleneck link, the testing
throughput reflects the throughput supported by the WiFi.
In our evaluation, Chariot 7.0 UDP-Throughput script is used

to measure the end to end UDP goodput between the primary test
machine and the peer test node. End to end TCP throughput is
measured by iPerf [1]. To measure latency, we used the round-trip
delay of an ICMP echo request/response pair (i.e., ping), by taking
samples over hour-long intervals. All reported results are averaged
over multiple measurements.
The primary test machine is a HP EliteBook 6930p laptop with

Intel Core2 Duo CPU at 2.53GHz, 4 GB RAM, 80 GB HDD,
and Intel WiFi 5300 AGN card. Both the host OS and guest OS
are 32-bit Linux with kernel version 2.6.33.1. For the performance
results below, we disabled one of the two CPU cores. The access
point used is Cisco WAP410N. For our purpose of analysis, we
performed the tests in several different scenarios:

• Native: Tests are performed in Linux with native WiFi driver.
No virtual machine is running in this case. The original WiFi
µCode is loaded onto the device. This is the baseline of the
native WiFi performance. We refer to results in this scenario as
Native.

• VM-Passthrough: Tests are performed in a Linux Guest OS,
with the native WiFi driver running inside the guest VM. The
VM is configured with 2G RAM and a single core CPU. The
physical WiFi device is assigned directly to the VM with In-
tel VT-d support. In this case, the guest WiFi driver interacted
directly with the physical device. The original WiFi µCode is
loaded onto the device. Neither device model nor augmented
host driver is involved. We use this configuration to capture the
performance when there is hardware supported WiFi virtualiza-
tion. We refer to the results in this configuration as Passthrough.

3 Performance Endpoint itself is an unobtrusive software agent with light
CPU load.

• Virtual WiFi: Tests are performed in a Linux Guest VMwith the
nativeWiFi driver running inside the guest VM. The augmented
host driver runs in host Linux kernel, and the augmented µCode
is loaded onto the device. The VM is configured with 2G RAM
and a single core CPU. The virtual WiFi interface is exposed by
virtual WiFi device model. This configuration follows our pro-
posed approach as shown in Figure 4. The software-based ad-
dress translation approach is applied unless VT-d is specifically
mentioned. We refer to results in this configuration as Virtual
WiFi.

To analyze virtual WiFi overhead contributing factors, we used
the Oprofile [5] tool to analyze the performance behaviors on dif-
ferent components of the system. Oprofile can attain a system-wide
statistical profiling results for Linux-based systems, which include
codes executing at both user and kernel levels. In our profiling,
we mainly focus on the CPU cycles (UNHALTED CPU CYCLES
event) consumed by each of the major components of virtual WiFi
prototype system. OProfile 0.9.6 is used in the tests. The profiling
result is presented and analyzed in section 5.3.

5.1 Throughput

Throughput test results are shown in Figure 5, where TX/RX
throughput is measured when the primary test machine trans-
mits/receives to/from the peer test node respectively. UDP through-
put is shown in Figure 5(a), where Chariot are configured to use
1450 byte packet size with traffic enough to saturate the WiFi link.
Each test lasts for 60 seconds. The measured throughput has large
variation across different runs due to the WiFi channel variation.
The presented throughput is averaged over ten runs. As we can
see, virtual WiFi achieves throughput comparable to the native
case. In all testing scenarios, achieved WiFi UDP TX/RX through-
put is around 22 Mbps/18 Mbps respectively using IEEE 802.11g
WiFi mode. Similar observations can be made for TCP throughput
tested using iPerf, as shown in Figure 5(b). In all testing scenar-
ios, achieved WiFi TCP TX/RX throughput is around 20 Mbps/20
Mbps respectively using IEEE 802.11g WiFi mode. In the tests,
iPerf is configured to use 1448 byte writes, the socket buffer size is
maximized, and 4 million writes are made.
Both UDP and TCP throughput tests confirm that our proposed

WiFi virtualization approach achieves throughput comparable to
native WiFi case.

5.2 Latency

Latency test results are shown in Figure 5(c), where round-trip
latency is measured when the primary test machine pings the peer
test node. The latencies are the average of 15 measurements. The
results show that the latency of virtual WiFi system is about 35%
higher than the native case (7.87 ms vs. 5.74 ms). In the case of
VM-Passthrough, the latency is 7% higher than native case (6.17
ms vs. 5.74 ms).
To understand where this extra latency comes from, we break

down the latency of transmission path into various components.
More specifically, we define the virtualization extra path as the ad-
ditional path in the TX/RX critical path introduced by virtualiza-
tion. In the virtual WiFi prototype system, the virtualization extra
path on network transmit starts from the point when guest driver is-
sues a packet sending (MMIO) request until the point the requests
(packets) are sent to the TX queue of the physical WiFi device by
the augmented host driver.
Our first instrumentation gauges the time spent on transmitting

a packet by reading the processor’s Time Stamp Counter (TSC)
register at key points during the virtualization extra path on network
transmit. The TSC allows a measurement of the total cycle count
of the path and breakdown of interesting subsegments.

2 02 01 5s 1 0Mb ps T XR X1 0M R X500 N a t i v e P a s s t h r o u g h V i r t u a l W i F i
2 01 51 0b ps T XMb R X500 N a t i v e P a s s t h r o u g h V i r t u a l W i F i

864ms 2m 20 N t i P t h h V i t l V i t lN a t i v e P a s s t h r o u g h V i r t u a lW i F i V i r t u a lW i F i (V T d)
(a) UDP Throughput (b) TCP Throughput (c) Round-trip Latency

Figure 5. End-to-end Performance of Virtual WiFi (Throughputs and Latency)

Host Driver

Gpa->Hpa

60,000

Gpa Hpa

User/Kernel Switch

Device Model

le
s

Device Model

Kernel/User Switch

KVM Handling
40,000

P
U

 C
y

cl KVM Handling

C
P

20,000

0

Software VT-d

Figure 6. Cycle number spent on major components on virtualiza-
tion extra path for single packet sending

Figure 6 presents the transmission latency break down involved
along the instrumented virtualization extra path using virtual WiFi
with software-based address translation mechanism and hardware
translation support (VT-d). It takes a total of 60000 CPU cycles
from the start of MMIO instruction from guest until packet is put
in the TX queue of the physical WiFi device for software based
address translation approach. The address translation (marked as
“GPA→ HPA“ in Figure 6) in software-based approach is respon-
sible for almost half of these cycles for network transmit.
With hardware IOMMU supports, we can reduce the latency

caused by software address translation. Specifically, in our proto-
type system, we eliminated most of the latency caused from address
translation by enabling VT-d support, and the round trip latency of
virtual WiFi with VT-d is only 15% higher than the native case
(6.63 ms vs. 5.74 ms in Figure 5(c)).

5.3 CPU Usage

Given that virtual WiFi achieves close to native WiFi throughput
and latency, we are interested to see how much system resource
is consumed by virtual WiFi. In particular, mobile devices such as
smartphones and tablets typically have limited processing power,
which may lead to CPU being a bottleneck. In this section, we dis-
sect the CPU time consumed by each of the major components of
virtual WiFi prototype system when the test machine is performing
network transmission in maximal throughput. The goal is to under-
stand what are the major overhead sources in terms of CPU con-
sumption, as well as to identify effective mitigation mechanisms to
reduce such overhead.

Figure 7. Overall CPU usage breakdown

5.3.1 Overall System CPU Usage

Figure 7 shows the overall system CPU usage measured at the pri-
mary test machine in different test scenarios. In each non-idle test
scenario, the primary test machine is performing UDP transmis-
sion in its maximal throughput. As we can see, when in system
idle state without virtual environment running, the CPU usage is
5% due to background processes and Oprofile daemon itself. With
one VM running idly, the system CPU usage is 10%. When Char-
iot test workload is running in host Linux and transmitting over
native WiFi without any virtualization, the system CPU usage is
19.5%. When running Chariot in guest VM with passthrough WiFi
device assigned, the system CPU usage is 23.6%. Finally, when
Chariot is running in Linux guest VM using our proposed virtual
WiFi approach without VT-d being enabled, the system CPU usage
is 50.9%. Clearly, virtual WiFi consumes much more CPU time
than the native WiFi case. In comparison, the CPU time consumed
in VM-Passthrough case is much less.
To investigate the sources of overheads, we used Oprofile to

determine where the CPU time is spent. Oprofile uses time-based
sampling to profile the distribution of time spent in main compo-
nents over the entire workload. The samples measure the percent-
age of time spent in code sections and the number of samples that
hit a section. This gives a more comprehensive picture of the over-
heads present in transmitting packets and reveals some expensive
functional components.

The CPU time consumption is broken down into percent of time
spent in the major components of virtual WiFi system including:

• Guest: The guest VCPU thread, running guest OS and its appli-
cations.

• Chariot: The test workload. In native case, Chariot’s CPU time
is shown separately. However, in virtual WiFi and passthrough
cases, Chariot is running in guest, thus its CPU time is included
in the guest as OProfile cannot separate applications running
inside VM.

• QEMU: The QEMU user process, which contains mainly the
virtual WiFi device model.

• KVM: The KVM module running inside host kernel, this part
is separated from the host Linux kernel for more analysis.
However, some of KVM code calls routines in other part of
kernel, the time spent by those routines is accounted to the host
kernel.

• Kernel-App: The part of host Linux kernel time that runs on be-
half of processing user requests, which includes host augmented
driver and all kernel service for QEMU, KVM and other func-
tions to support WiFi virtualization.

• Kernel-Background: The background routines running in ker-
nel, including Oprofile daemon itself. This part consumes al-
most the same for all test scenarios, which we treat it as back-
ground CPU time unrelated to virtualization.

The overall CPU usage and distribution of CPU time on these
major components described above is presented in Figure 7. We
can observe that most of the extra CPU time are consumed by
host kernel and KVM for virtual WiFi comparing with passthrough
and native cases. It should be noted that in the passthrough case,
the network stack is running inside Guest OS instead of Host OS,
which is the reason why Figure 7 shows Kernel-App in passthrough
case consumes less CPU time than the native case.

5.3.2 Host Kernel and KVM CPU Time

Table 1 further break down the CPU time distributed in KVM
module and host Linux kernel (Kernel-App part in Figure 7), as
we observed they are responsible for most of the extra CPU time
consumption when running virtual WiFi. By comparing the CPU
time distribution on host kernel and KVM for virtual WiFi with
passthrough and native cases, we made the following observations:
Interrupt Handling. The WiFi driver in Linux kernel release

2.6.33 used in our prototype implementation sets interrupt coalesc-
ing timer to 2 ms [4]. However, it is observed that the µCode ac-
tually overrides the interrupt coalescing timer set by the driver and
enables immediate interrupt for each TX command response. As a
result, each transmitted packet results in a TX command response
interrupt. This explains why in native WiFi case, the system CPU
usage is relatively high (19.5%). In the case of virtual WiFi, when
a physical interrupt arrived at the augmented host driver, the host
driver will notify the device model running in QEMU, which in turn
injects a virtual interrupt to the guest through KVM. As a result,
one physical interrupt could trigger four components’ involvements
in series, which includes four times of kernel/user and VMM/VM
switch. It obviously leads to much more CPU consumption if the
interrupts happen in high frequency.
Address translation. In measures done for Figure 7 and Table 1,

virtual WiFi uses the software-based address translation approach.
Most of address translation work is done by KVM module, and
it is another significant source of overhead. By applying hardware
IOMMU support, this part of overhead is supposed to be eliminated
or significantly reduced.

IO handling. Whenever guest driver issue a MMIO access, the
control transits into KVM by VM exit. KVM is responsible for
either handling the requests or forwarding it to the device models
in QEMU. After the device model is done with MMIO handling, it
returns to KVM, which resumes the guest VM. KVM IO handling
takes a significant chunk of CPU time also. The I/O handled in
KVM also includes accesses to the virtual interrupt controller. IO
handling is also a major CPU cost in the host kernel. The I/O
handling cost in host kernel corresponds to two parts: the primary
one is due to handling ioctl system calls from the virtual WiFi
device model and the other part is the I/O read/write to the physical
wireless NIC by the augmented host driver.
Contention/Synchronization. In virtual WiFi case, threads syn-

chronization/contention/scheduling cost is one of the major CPU
overhead in host kernel. Recall that in KVM/QEMU architecture,
guest VM run as separate threads from the device models. Any in-
teractions between VMs and device models, such as MMIO ac-
cesses by guest OS to virtual devices, or virtual interrupts injected
by device models into VMs, result in synchronization between VM
threads and device model threads. The large CPU time spent in
handling thread synchronization in host kernel indicates there are
a large number of interactions between VMs and device models.
Such interactions include MMIO accesses from guest and interrupt
delivery/injection to guest, which further confirms our observations
that I/O handling and interrupt handling are the major sources of
overhead for our virtual WiFi prototype system.
Comparing with our virtualWiFi approach, the direct passthrough

approach obviously needs much less kernel involvements. This is
because every IO request from the guest VM is passed directly to
physical device, and physical interrupt from physical device is de-
livered to guest by host kernel and KVM without the involvement
of either host driver or device model.

5.3.3 Overhead Mitigation Mechanisms

The CPU time distribution breakdown results from above discus-
sions indicate that interrupt handling and address translation con-
sume large portions of CPU time in our prototype implementa-
tion, which can be mitigated using interrupt coalescing and the
hardware-assisted address translation mechanism (e.g., VT-d), re-
spectively.

Interrupt Coalescing The interrupt handling in the particular test
case we analyzed mainly comes from TX command responses. Af-
ter a TX command is sent to the WiFi device, a command response
will be sent back by the device after the transmission attempt is
completed. The command response can be sent to the augmented
host driver by the device at various times through interrupt. The
augmented host driver will then notify the device model running
in QEMU, which then injects a virtual interrupt to the guest. Ob-
viously, interrupts have a higher impact in such a virtualized en-
vironment due to additional involvements of the device model in
QEMU and the augmented host driver. Most network devices to-
day support interrupt coalescing, which is to delay generating the
interrupt until either a specified number of packets is received or
when the maximum specified delay is reached. The WiFi driver in
Linux kernel release 2.6.33 used in our prototype implementation
sets interrupt coalescing timer to 2 ms [4]. However, it is observed
that the µCode actually overrides the interrupt coalescing timer set
by the driver and enables immediate interrupt for TX command
response. As a result, each transmitted packet results in a TX com-
mand response interrupt. With the average throughput of 22 Mbps
and the payload size of 1450 bytes, we are observing close to 1900
interrupts per second. Without the interrupt coalescing at WiFi de-
vice, we implemented similar function at the device model, where
the device model wait for 10 TX responses before it injects a vir-
tual interrupt to the guest, in order to observe the mitigation effect

KVM Time

Category Percent of Total Time
Virtual WiFi Passthrough

Delivering virtual IRQs 2.79% 0.34%
Address Translation 2.71% 0.15%
IN/OUTs handling and forwarding 2.06% 0.13%
Instruction Decoding 0.53% 0.33%
Managing guest shadow memory 0.69% 0.36%
Virtual CPU state updating 0.64% 0.44%

Host Kernel Time

Category Percent of Total Time
Virtual WiFi Passthrough Native

Interrupt handling/forwarding IRQs to device model 5.87% 1.22% 2.53%
IN/OUTs in driver/Handle IO requests from device model 4.95% 0.29% 2.56%
Locking/unlocking code section 4.72% 0.41% 1.08%
Scheduling user/kernel threads 2.06% 0.69% 0.30%
Packet memory copying 1.74% 0.35% 1.57%
Timer management/Timing service 1.15% 0.71% 0.10%
System call entry/return 1.78% 0.68% 0.56%
Other 0.50% 0.20% 0.34%
Network Stack 3.47%

Table 1. Distribution of CPU time spent in KVM and host kernel.

of interrupt coalescing. As we can see in Figure 8, with interrupt
coalescing at the device model, CPU utilization is dropped from
50.4% to 34.2% while achieving the same throughput. We expect
even less CPU utilization if the interrupt coalescing is enabled at
the WiFi device, since the interrupt coalescing at the device will
limit the number of physical and virtual interrupts, while the inter-
rupt coalescing we implemented at the device model only limits the
number of virtual interrupts.

Hardware-assisted Address Translation After enabling VT-d,
we observed the CPU utilization is dropped from 50.4% to 44.2%
as shown in Figure 8. With both interrupt coalescing and VT-d are
enabled, the total CPU utilization is 28% while achieving the same
throughput. Recall that the total CPU utilization is 19.3% in the
native WiFi case with no virtual machine running.
The reduction of IO handling overhead cannot be achieved as

long as the device model and host driver are involved in each
guest I/O request. One of our future works is to further investigate
the impact of data passthrough on wireless virtualization. More
specifically, we are investigating an approach that can support data
traffic passthrough between different guests and the physical device
through separate queues. However, the management traffic will be
intercepted by the hypervisor and forwarded to the augmented host
driver for further handling. Such an approach can take advantage of
the flexibility of software (i.e., augmented host driver) to support
complex WiFi management functions. On the other hand, it has the
potential of removing extra virtualization overhead from the critical
path of data TX/RX.
In summary, with interrupt coalescing and hardware-assisted

address translation, virtual WiFi achieves throughput comparable
to the native WiFi case with relatively 45% more CPU utilization
(28% vs. 19.3% CPU utilization).

6. Related Work

Virtualization The concept of virtualization has been widely
studied in the context of operating system. Various optimizations
have been proposed to improve the virtual machine monitors such
as Xen, VMware, Palacios [10, 23, 38, 39]. In recent years, there

5 04 05 04 0% 3 0PU% 2 0CP 1 0000 O r g i n a l C o a l e s c e V T d C o a l e s c e + V T d
Figure 8. CPU usage with different optimizations

has been a fast growing interest in mobile/client virtualization [22].
Examples of client virtualization solutions on the market include
XenClient [16], VMware desktop virtualization solutions [37] and
VirtualLogix mobile virtualization solutions [36]. Existing research
on I/O virtualization can be categorized into three approaches:
Fully emulated I/O, para-virtualized I/O, and hardware-assisted
virtualized I/O.
Full emulated I/O virtualization [35] provides virtualized views

of devices by emulating real devices instead of providing physi-
cal devices. Device models (virtual devices) implement virtualized
hardware devices completely in software within the VMM. Mul-
tiple virtual devices are then be multiplexed on a single physical
device. In this approach, no guest software change is required. But
there is significant performance overhead, due to large number of
context switches between VM and hypervisor caused by guest’s IO
accesses. Para-virtualization I/O [10, 25, 27, 31] refers to modify-
ing guest OS to run on the virtualized environment and exposing
some details of the hardware for optimization. Xen I/O extends this
concept by requiring guest changes and having the special driver

talk to a special VM that has direct hardware access. Drivers can
also be placed into separate driver VMs for better protection [24].
These techniques can often lead to significantly better I/O perfor-
mance. Hardware-assisted virtualized I/O that exploits specialized
hardware [7, 26, 29, 30, 32] has been proposed as an efficient
I/O virtualization mechanism. With hardware assisted virtualiza-
tion, the device presents multiple logical interfaces which can be
securely accessed directly by guest OS. Close to native I/O per-
formance can be achieved as a result of bypassing the hypervisor.
However, hardware virtualization requires substantial investments
in re-designing the device. In addition, hardware-assisted virtual-
ized I/O breaks the device transparency, which is a benefit of us-
ing software-based device virtualization. Device transparency has
the benefit of avoiding the need to maintain device-specific code
in guest VMs, also simplifying live migration of guest VMs across
physical machines that have different flavors of devices.
Our proposed virtual WiFi approach is similar to emulated I/O

approach in that it supports unmodified WiFi device driver in guest
OS. However, it is different from emulated I/O in that it requires
device model emulate the same device as the physical device on
the host and it passes many of the commands to the physical device
without emulating it. Therefore, it can achieve better performance
than emulated I/O approach. On the other hand, different from
hardware-assisted virtualized I/O, virtual WiFi approach does not
depend on any specific I/O virtualization support on device. Given
WiFi devices available on the market[9, 17, 20] can already sup-
port more than one vMACs, only software (i.e., driver and µCode)
upgrade is needed for supporting virtual WiFi solution. Essentially,
virtual WiFi is a hybrid I/O virtualization approach that is more
suitable for the purposes of exposing full wireless functionalities
inside guest VM, providing WiFi link level isolation, simplifying
hardware and software design and achieving appropriate perfor-
mance/complexity tradeoff.
There also have been many existing works that study the perfor-

mance overhead of different virtualization approaches on different
hypervisors and platforms [14, 18, 19, 28, 32]. This paper analyzes
the performance overhead of our proposed wireless virtualization
approach. To our best knowledge, we are not aware of any existing
work that addresses wireless virtualization and conducts associated
performance study.

Wireless Network/Radio Virtualization Sachs et al. [33] pro-
posed a radio resource sharing framework, which allow different
virtual radio networks to operate on top of a common shared in-
frastructure and share the same radio resources without interfering
with each other. Smith et al. [34] designed and implemented a vir-
tualized 802.11 testbed system with the goal to allow multiple ex-
periments to co-exist on a wireless experimental facility. Their key
issues are to maintain the coherence of each wireless experiment
(i.e., transmitter/receiver/potential interferers all need to operate on
the same channel), and to keep different experiments isolated (i.e.,
one experiment will not affect results of another experiment). Mil-
janic et al. discussed virtual radio in the context of software defined
radio. Their goal is to provide a common interface to layers above
the link layer so that the radio resource scheduling/allocation is hid-
den from higher layers. A radio virtualization layer is introduced to
handle the hardware resources responsible for managing communi-
cation bandwidth. MultiNet [13] proposes a driver based approach
to facilitate simultaneous connections to multiple networks using a
single wireless card. The “virtualization” of wireless card is imple-
mented with intermediate driver, which continuously switches the
card across multiple network. Microsoft Windows 7 has adopted
this feature, which is not designed to support virtual machine envi-
ronment.

7. Conclusion and Future Work

We proposed a hybrid wireless virtualization approach named vir-
tual WiFi, which combines elements of software and hardware for
virtualization support. The design goals of virtual WiFi are to ex-
pose full wireless functionalities inside guest VM, to provide WiFi
link level isolation across different VMs, and to achieve appropriate
performance/complexity tradeoff with architecture choices specifi-
cally suitable for wireless interface virtualization.
We have designed and implemented a prototype supporting

the IEEE 802.11g compliant WiFi interfaces. Work is ongoing
to extend the prototype to support IEEE 802.11n compliant WiFi
interfaces that operate at higher speeds. We are also porting our
virtual WiFi implementation to Xen and plan to understand virtual
WiFi performance in the context of Xen.
We showed that with interrupt coalescing and hardware-assisted

address translation, virtual WiFi achieves throughput comparable
to the native WiFi case with relatively 45% more CPU utilization
(28% vs. 19.3% CPU utilization). We also plan to further investi-
gate the impact of data passthrough on wireless virtualization as
we mentioned in Section 5.3.3.

References

[1] iperf homepage. http://iperf.sourceforge.net/.

[2] Ixchariot homepage. http://www.ixchariot.com/.

[3] Kvm homepage. http://www.linux-kvm.org/.

[4] Linux kernel 2.6.33, iwlwifi driver. http://lxr.linux.no/

linux+v2.6.33/drivers/net/wireless/iwlwifi/.

[5] Oprofile homepage. http://oprofile.sourceforge.net/.

[6] ABRAMSON, D., JACKSON, J., MUTHRASANALLUR, S., NEIGER,
G., REGNIER, G., SANKARAN, R., SCHOINAS, I., UHLIG, R.,
VEMBU, B., AND WIEGERT, J. Intel virtualization technology for
directed I/O. Intel Technology Journal 10, 3 (2006), 179–192.

[7] ANWER, M. B., AND FEAMSTER, N. Building a fast, virtualized data
plane with programmable hardware. In ACM SIGCOMMWorkshop on
Virtualized Infastructure Systems and Architectures (2009).

[8] APIKI, S. I/O Virtualization and AMD’s IOMMU. Ad-
vanced Micro Devices, Inc. http://developer.amd.com/

documentation/articles/pages/892006101.aspx.

[9] ATHEROS COMMUNICATIONS, INC. Direct connection. http:

//www.atheros.com.

[10] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., NEUGEBAUER, R., PRATT, I., ANDWARFIELD, A. Xen and
the art of virtualization. In ACM Symposium on Operating Systems
Principles (SOSP) (2003), pp. 164–177.

[11] BARTHOLOMEW, D. Qemu: a multihost, multitarget emulator. Linux
J. 2006, 145 (2006), 3.

[12] BELLARD, F. Qemu, a fast and portable dynamic translator. In ATEC
’05: Proceedings of the annual conference on USENIX Annual Tech-

nical Conference (Berkeley, CA, USA, 2005), USENIX Association,
pp. 41–41.

[13] CHANDRA, R., BAHL, P., AND BAHL, P. Multinet: Connecting to
multiple ieee 802.11 networks using a single wireless card. In IEEE
INFOCOM, Hong Kong (2004).

[14] CHERKASOVA, L., CHERKASOVA, L., GARDNER, R., AND GARD-
NER, R. Measuring cpu overhead for I/O processing in the xen virtual
machine monitor. In USENIX Annual Technical Conference (2005),
pp. 387–390.

[15] CISCO SYSTEMS, INC. Enterprise wireless competitive performance
test results. White Paper, 2010. http://www.cisco.com/.

[16] CITRIX SYSTEMS, INC. Xenclient virtual desktops. http://www.
citrix.com/.

[17] GIORDANO, B. Transforming small mobile devices into full-
featured wifi access points. Marvell Semiconductor, December 2009.

http://www.marvell.com/technologies/wireless/

marvell_wifi_mobile_hotspo%t_whitepaper.pdf.

[18] GUO, D., LIAO, G., AND BHUYAN, L. N. Performance characteriza-
tion and cache-aware core scheduling in a virtualized multi-core server
under 10gbe. IEEE Workload Characterization Symposium 0 (2009),
168–177.

[19] GUO, D., LIAO, G., BHUYAN, L. N., LIU, B., AND DING, J. J. A
scalable multithreaded l7-filter design for multi-core servers. In Pro-
ceedings of the 4th ACM/IEEE Symposium on Architectures for Net-

working and Communications Systems (New York, NY, USA, 2008),
ANCS ’08, ACM, pp. 60–68.

[20] INTEL CORP. Intel My WiFi Technology Tech Brief.
http://www.intel.com/network/connectivity/

products/wireless/mywifi.htm.

[21] KIVITY, A. kvm: the linux virtual machine monitor. In OLS ’07: The
2007 Ottawa Linux Symposium (2007), pp. 225–230.

[22] LAMBERT, N. Demystifying client virtualization. Forrester Re-
search, Inc., April 2008. http://www.vmware.com/files/

pdf/analysts/Forrester_Demystifying-Client-%

Virtualization.pdf.

[23] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA, P., CUI, Z., XIA,
L., BRIDGES, P., GOCKE, A., JACONETTE, S., LEVENHAGEN, M.,
AND BRIGHTWELL, R. Palacios and kitten: New high performance
operating systems for scalable virtualized and native supercomputing.
In IEEE International Symposium on Parallel & Distributed Process-
ing (IPDPS) (2010).

[24] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GTZ, S. Unmodified
device driver reuse and improved system dependability via virtual
machines. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (2004), pp. 17–30.

[25] LIAO, G., GUO, D., BHUYAN, L., AND KING, S. R. Software tech-
niques to improve virtualized i/o performance on multi-core systems.
In Proceedings of the 4th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (New York, NY, USA,
2008), ANCS ’08, ACM, pp. 161–170.

[26] LIU, J., HUANG, W., ABALI, B., AND PANDA, D. High performance
vmm-bypass I/O in virtual machines. In Proceedings of the USENIX
Annual Technical Conference (May 2006).

[27] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimizing
network virtualization in xen. In Proceedings of the USENIX Annual
Technical Conference (2006), pp. 15–28.

[28] MENON, A., JOHN JANAKIRAMAN, G., SANTOS, J. R., AND
ZWAENEPOEL, W. Diagnosing performance overheads in the xen
virtual machine environment. In VEE ’05: Proc. 1st ACM/USENIX
International Conference on Virtual Execution Environments (2005),
ACM Press, pp. 13–23.

[29] PCI-SIG. I/O virtualization. http://www.pcisig.com/

specifications/iov/.

[30] RAJ, H., AND SCHWAN, K. High performance and scalable I/O
virtualization via self-virtualized devices. In Proc. of HPDC (2007),
pp. 179–188.

[31] RAM, K. K., SANTOS, J. R., TURNER, Y., COX, A. L., AND
RIXNER, S. Achieving 10 gb/s using safe and transparent network
interface virtualization. In VEE ’09: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution en-

vironments (New York, NY, USA, 2009), ACM, pp. 61–70.

[32] RENATO, J., YOSHIO, S., JOHN, T. G., AND PRATT, J. I. Bridging
the gap between software and hardware techniques for I/O virtualiza-
tion. In 2008 USENIX Annual Technical Conference (2008).

[33] SACHS, J., AND BAUCKE, S. Virtua radio – a framework for
configurable radio networks. In WICON ’08: Proceedings of the
Fourth International Wireless Internet Conference (Maui, Hawaii,
USA, November 2008), ACM.

[34] SMITH, G., CHATURVEDI, A., MISHRA, A., AND BANERJEE, S.
Wireless virtualization on commodity 802.11 hardware. InWiNTECH
’07 (Montreal, Quebec, Canada, Sept 2007), ACM.

[35] SUGERMAN, J., VENKITACHALAN, G., AND LIM, B.-H. Virtual-
izing I/O devices on VMware workstation’s hosted virtual machine
monitor. In Proceedings of the USENIX Annual Technical Conference
(June 2001).

[36] VIRTUALLOGIX INC. Virtuallogix vlx. http://www.

virtuallogix.com/.

[37] VMWARE, INC. Vmware desktop virtualization prod-
ucts. http://www.vmware.com/products/desktop_

virtualization.html.

[38] WALDSPURGER, C. A. Memory resource management in vmware esx
server. In OSDI ’02: Proceedings of the 5th symposium on Operating
systems design and implementation (New York, NY, USA, 2002),
ACM, pp. 181–194.

[39] XIA, L., LANGE, J., DINDA, P., AND BAE, C. Investigating virtual
passthrough I/O on commodity devices. SIGOPS Oper. Syst. Rev. 43,
3 (2009), 83–94.

