Virtual TCP Offload: Optimizing Ethernet Overlay Performance on Advanced Interconnects

Zheng Cui University of New Mexico

Patrick Bridges University of New Mexico

Jack Lange University of Pittsburgh

Peter Dinda Northwestern University

http://v3vee.org

Overview

- We need fast virtual Ethernet overlay
 - Virtual Ethernet overlays are powerful
 - Slow on high-end networks like InfiniBand
- Problem: Semantic gap between overlay and physical networks
 - Duplicated protocol processing
 - More virtual interrupts
 - Difficult to efficiently leverage advanced interconnect features
- Solution: Virtual TCP Offload
 - Bridges semantic gap
 - Leverages advanced interconnect features
- **Result:** Dramatically improved application performance

Virtualizing High-End Networks

Virtual Ethernet overlays are powerful

- Enable Ethernet applications on high-end networks
- Ease network deployment/management
- Provide location/hardware independence
- Support broad classes of applications/stacks

• Performance on high-end networks (e.g.,InfiniBand) is slow:

- Latency: 40 times higher than native/uverbs
- Throughput: ~30% of native/uverbs
- 20-80% HPCC application benchmark slowdown

High-end networks need better overlay network support

Modern Virtual Ethernet Overlay: VNET/P

- Layer 2 virtual Ethernet overlay
- Embedded in Palacios VMM
- Three Components:
 - Virtual NIC for each guest OS
 - VNET core
 - VNET bridge
- 1G Ethernet
 - 3x higher latency
 - Near-native throughput
 - Near-native MPI application performance

Fig. 1. VNET/P architecture.

Semantic Gap Between Overlay Features and Physical Network Features

Application:

Reliable Stream

InfiniBand:

Reliable Stream

Semantic Gap Between Overlay Features and Physical Network Features

Application:

Reliable Stream

Semantic Gap **Virtual Ethernet:**

Unreliable Datagram

InfiniBand:

Reliable Stream

Semantic Gap Between Overlay Features and Physical Network Features

Two Approaches

Virtual Ethernets on heterogeneous interconnects:

- Minimal interconnect features
- Advanced interconnect features without guest knowledge

Approach #1:

Minimize Semantic Gap by Using Minimal Features

Application: UD MTU limitations: < 4K **Reliable Stream** Increasing # of network headers **TCP** Increasing routing decisions **Duplication** Increasing protocol **Virtual Virtual Ethernet:** processing cost **Interrupts** (ACKs) **Unreliable Datagram** Semantic interrupts **InfiniBand:** Gap InfiniBand: **Unreliable Datagram** Reliable Stream

Increasing # of virtual

Approach #2: Minimize Semantic Gap by Translating to Advanced Features

Virtual TCP Offload

Add TCP Offload to Virtual NIC

- Keeps Ethernet abstractions
- Guests designate reliable/unreliable traffic at Ethernet level

Virtual TCP Offload architecture

InfiniBand Interconnect

Map VTOE TCP Connections to Physical Network Connections

• Maps VNET Connection ID (SID) – host shadow Connection ID (CID)

• Manages DMA buffers for zero-copy in overlay

• Translates events/interrupts

VTOE NIC Architecture

Operations:

- Connection creation/teardown and state changes:
 - IO Ports
 - Event Queue (shared ring buffer)
 - Connect_Request, Connect_Established, Disconnected, Address_Error, Unreachable, Connect_Rejected ...

Data movement

- SendWQ and RecvWQ (shared ring buffers)
- Tagged with SID for each buffer
- Virtual interrupts

Implementation

Linux Guest over InfiniBand Interconnects

- Connection Management: TCP vs InfiniBand state machines
 - Connection establishment
 - Connection termination
- Data Transfer: Avoiding copy and page-flipping cost [1]
 - Transmission with zero overlay copies
 - Reception with zero overlay copies

• Interfacing with Linux Guests

[1] Cui, Z., Xia, L., Bridges, P. G., Dinda, P. A., and Lange, J. R. "Optimizing overlay-based virtual networking through optimistic interrupts and cut-through forwarding." SC '12

Implementation: Connection Establishment

Implementation: Connection Termination

Testbed

• 6-node cluster: 8-core AMD Opteron CPU + 32GB RAM + Mellanox MT26428 10 Gbps InfiniBand NIC

Configuration:

IB NIC

VTOE: Near-native TCP Bi-directional Throughput on IB

TTCP Bi-directional -18862 -n4000000

VTOE: Near-native TCP Bi-stream Throughput on IB

TTCP Bi-stream -18862 -n4000000

VTOE: Increased MPI P2P Throughput >2X on IB

IMB Large Message Pingpong

VTOE: Reduced MPI P2P Latency >50% on IB

IMB Small Message Pingpong

VTOE: 20X higher MPI latency than Uverb on IB

IMB Small Message Pingpong

VTOE: Near-native HPCC MPI Application Performance on IB

Conclusion

- Virtual Ethernet can achieve high tightly-coupled MPI application performance on heterogeneous interconnects
- Challenges in deploying virtual Ethernet over advanced heterogeneous interconnects:
 - MTU limitations
 - Duplicated RC protocol processing overhead
- Optimization approach: Virtual TCP Offload
- Optimization efficiency:
 - Latency: reduced by 50%
 - Throughput: increased by > 2.5x
 - Near-native throughput-sensitive MPI application performances

Future Work

- Further reduce latency: Optimistic interrupts [1]
 - Early Virtual Interrupt (EVI) injection
 - End of Coalescing notifications
- Reduce memory copies:
 - Guest application buffers/guest kernel space
 - RDMA

[1] Cui, Z., Xia, L., Bridges, P. G., Dinda, P. A., and Lange, J. R. "Optimizing overlay-based virtual networking through optimistic interrupts and cut-through forwarding." SC '12

Acknowledgement

• DOE Office of Science Advanced Scientific Computing Research award DE-SC0005050 and DE-SC0005343

• NSF grants CNS-0707365 and CNS-0709168

Scalable System Lab in University of New Mexico

Contact Information

Zheng Cui
Department of Computer Science
MSC01 1130
University of New Mexico
Albuquerque, 87131

Email: cuizheng@cs.unm.edu zcui293@gmail.com

http://cs.unm.edu/~cuizheng

Questions?