Shifting GEARS to
Enable Guest-context
Virtual Services

September 18, 2012

Kyle C. Hale
Lei Xia
Peter Dinda

K& Northwestern University http://v3vee.org

OVERVIEW

= We advocate hoisting implementations of VMM services
up into the guest without guest cooperation

= GEARS (Guest Examination And Revision Services):
framework for virtual services

= Allows easy development of services, with potential
performance gains and small increase in VMM complexity

= Two prototype guest-context virtual services
= Overlay networking accelerator
= MPI Accelerator

App frontend
Kernel frontend

GEARS Framework

Service Backends

User-provided Services

GEARS

Operation

EQverview

EGEARS OUTLINE
EEvaluation of Tools
mExample Service
BConclusions

MOTIVATION

= VMM code running within the guest can be simpler,
operates at a higher semantic level

® Overheads from VMM exits are substantial

® Allows new classes of services that wouldn’t be
possible

= Alternatives, e.g. paravirtualization, symbiotic
virtualization, require guest cooperation

® Need a bidirectional interface between VMM and
guest, no guest cooperation

m0Qverview
=EMotivation

L]

mEvaluation of Tools
mExample Service
mConclusions

OUTLINE

PALACIOS VMM

®0S-independent, embeddable VMM

mSupport for multiple host OSes (Linux, Kitten
LWK)

®"Open source, available at
http://v3vee.org/palacios

Palacios
An OS Independent Embeddable VMM 7

GEARS

= We claim that to enable wide range of services, need
3 major tools
= System call interception: track userspace events
= Process environment modification: pass info to processes
= Code injection: run VMM code in guest (app and kernel)

® These tools could be built in any VMM, and require
little implementation effort

GEARS DETAILS

= Adds little complexity to VMM codebase

m Service developer provides implementations and
GEARS transforms and places them appropriately in
guest

Component SLOC

System Call Interception 833

Environment 683
Modification
Code Injection 915

Total 2431

App frontend
Kernel frontend

GEARS Framework

Service Backends

User-provided Services

GEARS

Operation

SYSCALL INTERCEPTION

® Introduce system calls as exceptional events to VMM
= SYSCALL/INT Ox80

= Can build several services on top of this technique
= Sanity check args against errors/attack
= Match system call patterns to higher level events

®m Used in GEARS to track user-space events at a fine
granularity

m Either exit on all syscalls or be selective (requires

injected module)
11

SELECTIVE

SYSTEM
Guest Kernel CALL

EXITING

Original Alf (syscall_mapli])
syscall entry ! hypercall
point ! else
goto original

VMM + GEARS

PROCESS ENVIRONMENT MODIFICATION

® Intercept calls to execve() to track process creations

® [nterception happens before new address space created

= Modify environment variables passed to child process

= A few interesting env. vars we can manipulate from VMM
= LD_PRELOAD
= LD_BIND_NOW
= LD_LIBRARY_PATH

= We use LD_PRELOAD in our examples

13

CODE INJECTION

= Allows VMM to run arbitrary code in guest without
cooperation

m Core tool for guest-context virtual services

m Userspace injection: map trusted code into process addr.
space

= Kernel: use userspace injection to inject kernel module in
guest

®m Code can be called directly by VMM, or redirect function
calls by patching binary

14

Process Address Space

USERSPACE
CODE
a4) INJECTION
sizeof(.text) +
sizeof(.data)
RWX A
J

mmap area

7
- -7

s

Process Address Space ﬁject text \

mmap area f = open(“Inject.ko”); KERNEL

write(f, kobuf); CODE
INJECTION

4 Y Vel

sizeof(.text) + : system(“insmod
sizeof(.data) inject.ko”);
RWX

. S o

Inject .data

éhar * kobuf = “ \
_ | Static int mod_enter;
static int mod_exit;

\

1

I

i

)

1
\
‘\

\,

“,

\ /

mycode.c

Code Syscall Environment
Injection Interception Modification

GUT R LY Observe important Read/Write
code in process events process specific

Guest app/ info

kernel GEARS

Service
Interaction

mQverview
=EMotivation
.GEARS OUTLINE
||

mExample Service
mConclusions

SYSCALL INTERCEPT LATENCY LOW

getpid() system call

Legacy System Call (INT 0x80)

Strategy Latency (us)
Guest 4.83

Guest + intercept 10.24

SYSCALL Instruction

Strategy Latency (us)
Guest 4.26

Guest + intercept 4.51

Setup: AMD x86_64, 2.3 GHz Quad-core Opterons
Host: Fedora 15, Linux 2.6.42 Guest: Linux 2.6.38

19

SYSCALL BANDWIDTH UNCHANGED W/

INTERCEPT

guest -»-guest+intercept

5000
4500
4000
& 3500
~
[a1]
S 3000
=
S 2500
© 2000
c
©
@ 1500
1000

500

2 8 32 128 512 2K 8K 32K 128K 512K 2MB
Buffer Length (B)

20

VAV

2

8

32

128

512 2K 8K
Buffer Length (B)

32K 128K 512K 2MB

BANDWIDTH RATIO WITH/WITHOUT
INTERCEPT

21

BQverview

EMotivation
.GEARS OUTLINE
EEvaluation of Tools

BConclusions

MPI| ACCELERATOR

= MPI library in guest is oblivious to VMs on same host

®m Use GEARS to transform MPI_Send/Recv (library
calls) into memcopy operations

® Building within VMM is difficult because we lose MPI
semantics
= Discern semantics from guest app

m Uses userspace code injection and process
environment modification

23

Inserted via
GEARS system call
interception, code
injection, and
process
environment
modification

MPI| ACCELERATOR

MPI Aeplication MPI ApPIication
\d Y
Top Half Top Half
MPI Library MPI Library
Guest Kernel Guest Kernel
PalaciosyMM Y Y
Constrained
Host Hype'»(','all Guest Access
Yy 4
Host Match-Copy-Release
Kernel Processing
Bottom Half

24

MPI| ACCELERATOR

= We focus on blocking send and recv

® |njected library redirects some MPI calls as VMM
hypercalls

= Bottom half tracks MPI processes using a tuple (VM
ID, virtual core, CR3, executable name)

25

Latency in Microseconds

100000

10000

1000

100

-
o

¥ VNET/P+Gears
3 VNET/P
MPI-Accel

Main memcpy bandwidth

0 4 32 256 2K 16K 128K
Message Size in Bytes

1M 4M

MPI Accelerator
Approaches
Main memory
copy bandwidth

SERVICE IMPLEMENTATION

COMPLEXITY LOW

MPI Accelerator

Component SLOC

Preload Wrapper (Top Half) 345
Kernel Module (Bottom Half) 676
Total 1021

Overlay Accelerator

Component SLOC

Vnet-virtio kernel module 329
(Top Half)

Vnet bridge (Bottom Half) 150
Total 479

27

BQverview

EMotivation
.GEARS OUTLINE
BTools Evaluation
mExample Service

CONCLUSIONS

mGEARS, a set of tools to enable guest context
virtual services

®"Tools that comprise GEARS are few and
compact, could be implemented in other VMs

mDevelopers, with little knowledge of VMM core,
and without modifying guest, can use GEARS
to build virtual services that are
"=smaller
= faster
= easier to understand
= otherwise unfeasible 29

FUTURE WORK

mExplore boundaries between VMM-injected
code and guest code

mSafely run trusted components in guest, give
them privileged HW access

= Application-specific VMM awareness, guest

context virtual services as an alternative to 0OS
ABI

30

QUESTIONS?

=Get Palacios (with GEARS) online
http://v3vee.org/palacios

= Kyle Hale: http://users.eecs.northwestern.edu/~kch479

Palacios

An OS Independent Embeddable VMM 31

100000

10000

1000

100

10

Latency in Microseconds

¥ VNET/P+Gears

3 VNET/P
MPI-Accel
0 4 32 256 2 K 16K 128K 1MB 4 MB

Message Size in Bytes

ACCELERATOR
PERFORMANCE

Lewinsky

OVERLAY ACCELERATOR

=" VNET/P: overlay networking system in Palacios
= Layer 2 abstraction
= Near native performance in 1Gbps/10Gbps
= 75% native throughput, 3-5x native latency fully encapsulated

® Overheads due to VM exits, data copies, data
ownership xfer

= Use GEARS to move part of datapath into guest

33

Application

J N

A\ 4

Native Virtio Driver

A

\ 4

Virtio NIC '

{
[Packet Encapsulation/]

Forwarding
[Direct Network Bridge]

a

A\ 4

Host NIC Driver

F——————————— = ——————— ==

Physical Network

VNET/P

|
I VM Application :
I I
! Top Half. _
il 2t |_Inserted via
II{Augmented Virtio Driver GEARS
:= Packet Encapsulation/ |1 | code VNET
! Forwarding Accelerator
= .- injection
' vum | Bottom I-Ialf

———
: - Virtio NIC 1
Fo 1,
1o
[:[Direct Network Bridge]i :
R s .
I |
I |
I Host NIC Driver !
R t _______ a

Physical Network
VNET/P Accelerator

VNET ACCELERATOR:
SMALL LATENCY IMPROVEMENT

Benchmark Native VNET/P VNET/P Accel
Latency
min 0.082 ms 0.255 ms 0.205 ms
avg 0.204 ms 0.475 ms 0.459 ms
max 0.403 ms 2.787 ms 2.571 ms
Throughput
UDP 922 Mbps 901 Mbps 905 Mbps
TCP 920 Mbps 890 Mbps 898 Mbps

* Proof of concept
* Could improve further with more functionality in
guest (with privileged HW access)

35

WHY CODE INJECTION?

= j.e., why do we care whether a guest cooperates?

= What about a compromised guest? (VMM could forcefully
repair a guest)

= What about guests where you don’t have control, but want to
enforce some invariant?

= What if changes need to be made on the fly? E.g. host-guest
file copy=>saved time

36

WHAT ABOUT SECURITY?

= We’ve essentially increased the possible number of attack
vectors into the hypervisor, right?

® True, but there may be ways we can protect guest-context VMM
code better than other interfaces (e.g. Secure in-VM
monitoring)

= VMM can remove its code from the guest, lock down the guest
etc. when a vulnerability is found.

37

