Guarded Modules: Adaptively
Extending the VMM’s Privileges Into
the Guest

Kyle C. Hale
Peter Dinda

Department of Electrical Engineering and Computer Science
Northwestern University

http://halek.co
http://presciencelab.org
http://v3vee.org
http://xstack.sandia.gov/hobbes

Palacios
An OS Independent Embeddable VMM

Redefining the boundaries between
VMM and guest OS

Guest OS

VMM

Redefining the boundaries between
VMM and guest OS

: @ Guest OS

We want to evolve the VMM-guest
relationship

...where the interface between the two is more
flexible

...and where parts of the VMM may actually live
inside the guest

The latter is the focus of this work

GEARS*

f Guest-context \
virtual service
>
<€
\ i i Guest /
4 L VMM\
Virtual | | :
service |]

_ - J

Palacios
An OS Independent Embeddable VMM

* K. Hale, P. Dinda. Shifting Gears to Enable Guest-context Virtual Services, ICAC 2012

=

v 7
A

.

L

~

N\

i i vuest)
E E VMM A
VirtL!aI i i
service
privileged J

operations
VN

can still?teract

_ -E -i' Guest)
« E E VMM\
Virtual i i
service { J
\ J

-

How can we isolate and protect pieces of code
in a guest OS that run at higher privilege than
the rest of the guest?

How can we allow legacy code continue to use
guest functionality?

We show how with two examples

Palacios VMM

* 0OS-independent, embeddable VMM
e Support for multiple host OSes (Linux, Kitten LWK)

 Open source, available at
http://v3vee.org/palacios

Palacios
An OS Independent Embeddable VMM

Christoization
Threat Model and Runtime Invariants
Runtime System and Border Crossings

Examples

— Selectively Privileged PCl Passthrough
— Selectively Privileged MONITOR/MWAIT

Conclusions

Guarded Module Transformation

Christoization

Linux Guarded
Kernel Module
Module

guarded module compiler

11

Christoization

Compile-time and link-time wrapping

we use gcc toolchain to instrument (wrap) all calls
out of and into the module

Christo and Jeanne-Claude wrap the
Reichstag, Berlin, 1995

12

The guest is not to be trusted

We assume a threat model in which a malicious
kernel wants to hijack a service’s privilege

Execution paths entering and leaving the
guarded module must be checked

13

We maintain control flow integrity

Christoization allows VMM to trap all entries
into and exits from module _

= privileged operation

Guardedprintk()

Module —_—
] Guest

record environment

VMM validates the environment for
unauthorized changes to execution path (e.g.
return oriented attacks)

14

We maintain control flow integrity

Guarded
Module €— @

1 noint valid? VMM

= privileged operation

15

...and code integrity

Guarded i
Module write to module code

= privileged operation

16

...and data integrity

private
module
data @ ule data
Guarded
Module

= privileged operation

17

What we don’t provide

Parameter checking
Module cloaking

Currently no support for interactions between
guarded modules

18

Programmer’s perspective

. Write a Linux kernel module (or use an
existing one)

. Run it through our guarded module compiler
(christoization)

. Optional: verify identified module entry
points

. Pass to administrator, who registers guarded
module with VMM at runtime

19

RECAP: Guarded Modules
are guest context virtual services

...that can have elevated privilege, are protected from the
untrusted guest that they runin, yet can still use its
functionality

The implementation is small: ~220 lines of Perl, ~260
lines of Ruby, and ~1000 lines of C

(includes both the GM compilation toolchain and
runtime system)

available online at http://v3vee.org/palacios

20

Runtime: module entries/exits trap to
the VMM

We call these trapped events border crossings

Privileged
Border-out call Border-out ret
A Illegal activity A I
I
Bor:ler-i?(cal
Border-in ret v
Unprivileged

21

Wrapper stubs

exit wrapped:
popq %rill
pushqg %rax
movq $border out call, %rax
vmmcall <

popq %rax
callg exit
pushq %rax
movq $border_in ret, %rax

vmmcall <
popq %rax

pushq %rill
ret (to into guarded module)

Trap to VMM,
record environment

Trap to VMM,
Check integrity of
environment

22

Guest Kernel
Border
= = = = = = =
& | Guarded Module
g Border-out I
I e B
o [
“: Border-in I
VD ———
T I
o
oa)]
[
VMM
Privileged Privileged
Border Control VMM Hardware
> State Machine Access Access
Hardware

23

Typical Border Crossing

/guarded module \

printk()

(—
return

module_init()

\ guest /

= privileged operation

24

Nested Border Crossings

/guarded module \

__foo() bar (),

callback()
return

e—

>

—
€ guest

\ return preturn /

= privileged operation

25

Border Crossing from External Event

/ guarded module \

\ guest /

iret interrupt

v

= privileged operation

Experimental Setup

* Dell PowerEdge R415
— 2 sockets, 4 cores each => 8 total cores
— 2.2 GHz AMD QOpteron 4122
— 16 GB memory
— Host kernel: Fedora 15 with Linux 2.6.38

— Guest: single vcore with Busybox environment,
Linux 2.6.38

27

System-independent overhead is low

K misc_exit_handle
~ entry lookup
& misc_hcall

i lower/raise

28

...but ensuring control-flow integrity is

Cycles

10000

9000 -

8000 -

7000 -

6000 -

5000 -

4000 -

3000 -

2000 -

1000 -

expensive

Border-out Call

Border-in Ret

Border-in Call

Border-out Ret

“ entry_lookup

& misc_exit_handle
“ misc_hcall

i check

& priv lower/raise

29

 Examples

— Selectively Privileged PCl Passthrough
— Selectively Privileged MONITOR/MWAIT

e Related Work and Conclusions

We transformed a NIC driver into a
guarded module

guarded
module

no manual modifications to NIC driver!

31

Selectively expose the PCl BARs to the

guest

-

guarded module 1
privileged mode

~

-

guarded module 2
unprivileged mode

~

32

Bandwidth drops, but border crossing
count is very high!

Each border
crossing is
~16,000 cycles
(7.3 us)

Border-in .0
Border-out I1.06
Border Crossings / Packet Send 2.12
Border-in 4.64
Border-out 4.64 l
Border Crossings / Packe#Receive R.ZS/
\Vj

Many of these are leaf functions!

33

We implemented an adaptive idle loop
with selective privilege

MONITOR/MWAIT instructions allow a CPU to
go into a low-power state until a write occurs to
a region of memory

MONITOR [addr]

MWALT

34

VMs can’t typically use these
instructions

Puts physical core to sleep. Other VMs/processes
on that core will starve

But if the guest knows how many guests are on the
machine (VMM state), we can let it run these
instructions when idling

Can’t let untrusted parts of guest hijack this
capability!

35

Adaptive mwait idle() as a guarded
module

guest

idle() mwait_idle()

gt

vcores I
present?
J

ﬁ -_— - e . e o
guarded module

36

277

vcore O

ait _idle()

idle loop redirection stub
(guarded module)

pcore 0

Scenario 1:

a single vcore

277

vcore O

default_idle()

vcore 1

pcore 1

Scenario 2:

vcores sharing a
physical core

37

Guarded Modules as adaptive, guest-
context virtual services

We're leveraging VMM global information about
the environment

That information is only exposed to the guarded

module—this presents a new way to adapt VMs
at runtime

38

Related Work

Nooks — isolate faulty code in kernel modules with
wrappers. Kernel requires modification, protecting
guest from modules

[Swift, SOSP ‘03]

LXFl, SecVisor — protect kernel against attack with
VMM-authorized code

[Mao, SOSP "11], [Seshadri, SOSP ‘07]

SIM — guest-resident VMM code, but special-

purpose, uses completely separate address space
[Sharif, CCS ‘09]

39

Conclusions

We’'ve shown the feasibility of adaptively extending
the VMM into the guest with guarded modules

General technique to automatically transform
kernel modules into guarded modules

Two proof-of-concept examples:
- Selective Privilege for Commodity NIC driver
- Selective Privilege for MONITOR/MWAIT

Future Work

Feasibility of automatically inlining leaf functions
into modules (making them more self-contained)

Further motivating examples for guarded modules

Generalization of guarded modules—modules with
VMM-controlled, specialized execution modes

41

We are rethinking system software
interfaces

This talk focused on virtualization, but we’re
thinking bigger (HW/VMM/OS/app)

It’s time to reconsider the structure of our
system software stacks

We can adapt software services, but can we
adapt their organization/structure?

For more info:

Kyle C. Hale

http://halek.co
nttp://presciencelab.org
http://v3vee.org
http://xstack.sandia.gov/hobbes

Palacios
An OS Independent Embeddable VMM

