

Virtualization in High-End Supercomputing

MASVDC'10:

Workshop on Micro Architectural Support for Virtualization, Data Center Computing, and Clouds

December 5, 2010

<u>Kevin Pedretti</u> Sandia National Labs Albuquerque, NM <u>ktpedre@sandia.gov</u>

Patrick Bridges Univ. of New Mexico Albuquerque, NM bridges@cs.unm.edu

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.


Outline

Introduction

- Previous Work
- High-End HPC Virtualization Use Cases
- Results
- Conclusion

Apples and Oranges, But... No Doubt Mainstream Virtualization Seeing Explosive Growth

Sandia National Laboratories

Virtualization in HPC?

- "Every problem in computer science can be solved with another level of abstraction";-)
- "No virtualization in HPC"
 - Well, we (usually) have virtual memory
 - Virtualization is potentially disruptive
 - Clayton M. Christensen's keynote at SC'10
 - Won't/Can't attack established HPC initially, may sneak up over time

Vendors steadily decreasing virtualization overhead and adding capabilities

- Compelling use cases not necessarily dependent on achieving absolute highest performance
 - Increase flexibility, app-specific OS/runtime
 - Enable new capabilities not present today
 - Modest overheads tolerable
- Well known techniques such as VMM-bypass and large paging mitigate overheads

Our results show virtualization overhead is low, typically less than 5%

Outline

- Introduction
- Previous Work
- High-End HPC Virtualization Use Cases
- Results
- Conclusion

- Motivation for migrating HPC workloads to VMs (ICS'06: Huang, Liu, Abali, Panda)
 - Ease of management (live migration, checkpoint)
 - Ability to run custom tailored OS (LWK)
 - Exposing privileged ops to user (kernel modules)
- High-performance I/O
 - VMM-bypass (USENIX'06: Liu, Huang, Abali, Panda)
 - Migrating VMM-bypass VMs (VEE'07: Huang, Liu, Koop, Abali, Panda)
 - **PGAS applications in Xen VMs** (*Cluster'07: Scarpazza, Mullaney, Villa, Petrini, Tipparaju, Brown, Nieplocha*)

Previous Work: Resiliency and Overhead Reduction

Proactive VM migration to improve resiliency

(ICS'07: Nagarajan, Mueller, Engelmann, Scott) (FGCS-Mar10: Scott, Vallee, Naughton, Tikotekar, Engelmann, Ong)

- Migrate away from nodes with observed deteriorating health
- Reactive checkpoint frequency can be reduced if MTTI improved
- Nested paging to reduce VM exits
 - AMD nested paging, Intel EPT
 - **2-D nested page table caching scheme** (ASPLOS'08: Bhargava, Serebrin, Spadini, Manne)
 - NPT structure does not have to match native (CAL-Jan10: Hoang, Bae, Lange, Zhang, Dinda, Joseph)

Previous Work: Cloud and VM Scalability

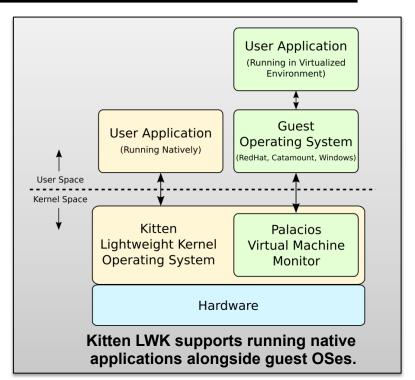
Using public clouds for HPC

- Migrating workloads and performance measurements (SC'08: Deelman, Singh, Livny, Berriman, Good) (GC'09: Hill, Humphrey)
- Amazon's EC2 HPC instances with 10GigE + GPUs
- Scalability of MPI apps in VM on Cray XT

(IPDPS'10: Lange, Pedretti, Hudson, Dinda, Cui, Xia, Bridges, Gocke, Jaconette, Levenhagen, Brightwell)

- Micro-benchmarks and real applications
- Up to ~6K nodes, more on way

Outline


- Introduction
- Previous Work
- High-End HPC Virtualization Use Cases
- Results
- Conclusion

Enhancing Lightweight OS Flexibility

- Original motivation
- LWK provides high perf. native environment
- VMM allows full-featured guest OS (e.g., Red Hat Linux) to be loaded on-demand
 - Perl, python, matlab, ...
 - COTS databases, simulators, ...
 - You name it
- Approach also applies to lightweight Linux distributions like CLE (Cray Linux Env.)

Kitten available from:http://code.google.com/p/kitten/Palacios available from:http://v3vee.org/

Tool for Exascale OS Research

- Obtaining dedicated time on supercomputer to test prototype OS is HARD
- VM capability would partially mitigate
 - Test prototype "X-stack" at scale, expose effects that only occur at scale
 - Rapid turnaround for debug iterations
 - VM is convenient instrumentation layer
- Support HW/SW co-design efforts
 - Prototype new HW/SW interfaces and capabilities
 - Tie to architectural simulator

Enable New Capabilities

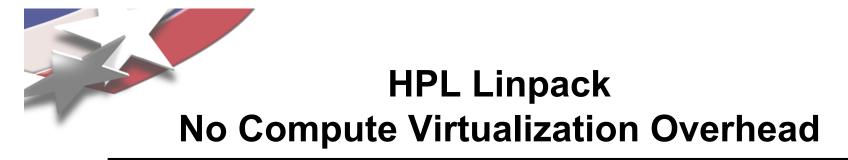
- Internet-scale simulation
 - Run commodity OSes and software
 - Multiple virtual nodes per physical node
- Migration based on VMM-level runtime monitoring
 - Better map application onto network topology
 - Migrate memory pages among NUMA nodes
 - Make up for all VMM overhead and more (?)
- Provide backwards compatibility
 - Support legacy software on future exascale systems
 - Provide incremental path to native environment

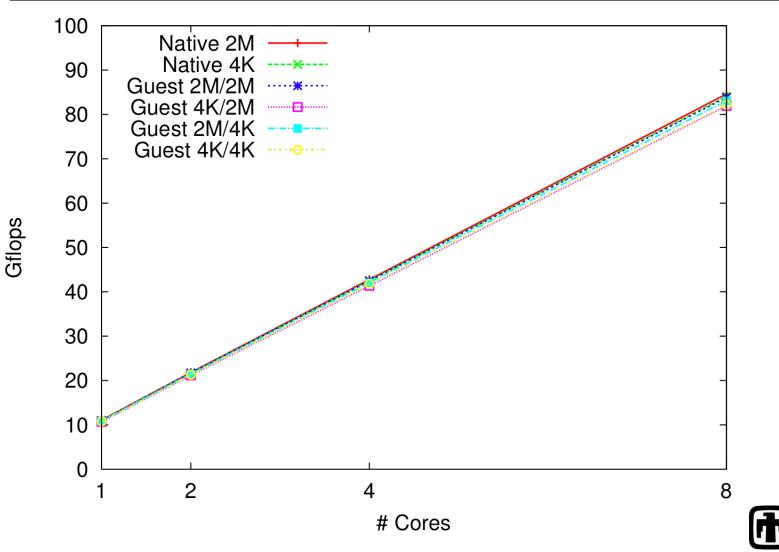
Outline

- Introduction
- Previous Work
- High-End HPC Virtualization Use Cases
- Results
- Conclusion

Test Platform

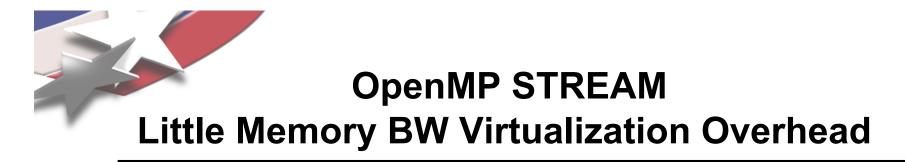
Processor	Intel X5570 2.93 GHz quad-core 2 sockets, 8 cores total 2 NUMA nodes Theoretical Peak: 94 GFLOPS
Memory	24 GB DDR3-1333 Three 4 GB DIMMs per socket Theoretical Peak: 64 GB/s
BIOS Configuration	Hyper-Threading Disabled Turbo-Boost Disabled Maximum Performance
Software	Linux 2.6.36.7 with KVM Guest image identical to host kvm-clock para-virtualized clock, plus ntp daemon NUMA topology exposed to guest libhugetlbfs for large paging

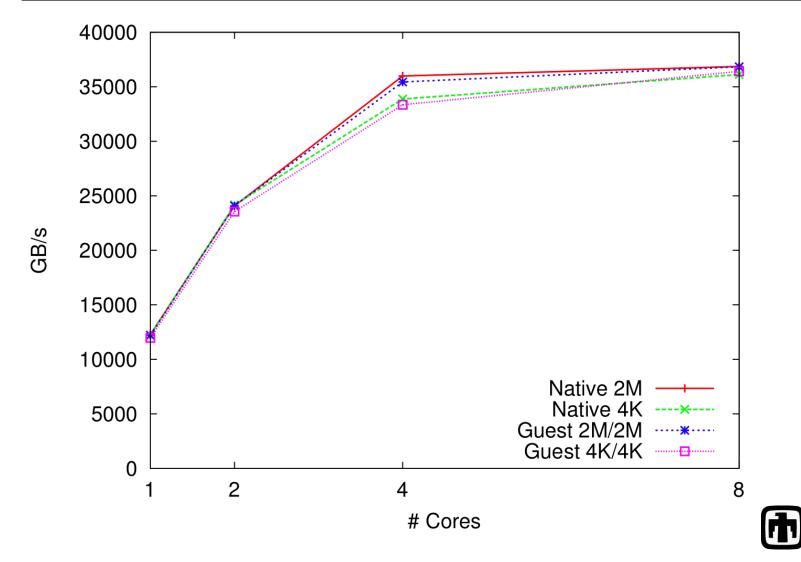




Benchmarks

- Compute overhead
 - Linpack (HPCC HPL)
- Memory overhead
 - OpenMP STREAM
 - GUPs (HPCC MPIRandomAccess)
- MPI
 - PingPong (IMB PingPong) Intra-node only, via shared mem (MPICH2 Nemesis)



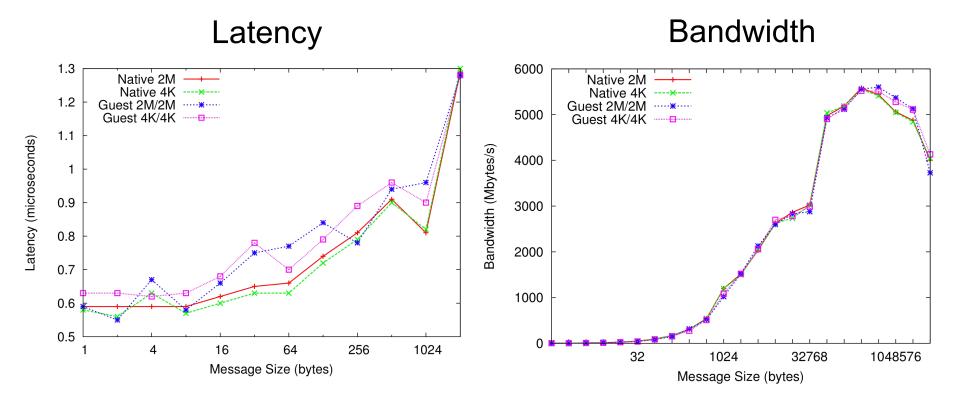


Sandia National

Laboratories

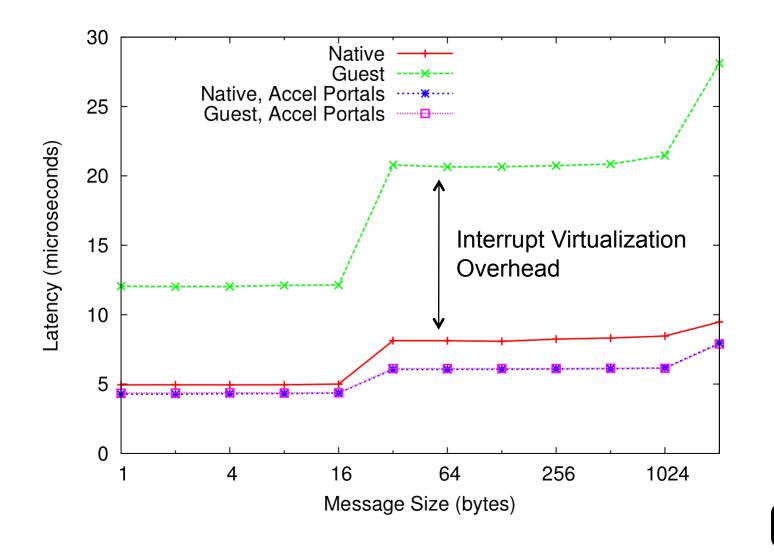


Sandia National


Laboratories

MPI Random Access

2.5% to 40% Overhead Depending on Config


MPI PingPong Latency in Guest More Variable Bandwidth Essentially Identical

Variability possibly due to timekeeping inaccuracy in guest

VMM-Bypass MPI Latency on Cray XT4 Avoiding Interrupt Virtualization Important

Conclusions

- Virtualization support continuously improving
- Significant previous HPC virtualization work
- Compelling use cases for high-end HPC
 - Increase flexibility
 - Enable new capabilities
- Results show low virtualization overhead
 - NUMA and VCPU pinning important in all cases
 - Large paging important for random access

Acknowledgements

- Funding
 - DOE ASCR X-stack (current)
 - DOE ASC (current)
 - Sandia LDRD (past)
- Collaborators
 - Peter Dinda, Northwestern Univ.
 - Jack Lange, Univ. of Pittsburgh
 - Geoffroy Vallee, ORNL

