
James Swaine1 Kevin Tew2 Peter Dinda1

Robert Bruce Findler1 Matthew Flatt2

1Northwestern University
2University of Utah

Back to the Futures:
Incremental Parallelization of Existing Sequential Runtimes

1Friday, March 18, 2011

Slow-Path Barricading

Incremental
Seq. performance intuition
carries over
Low development investment
Good scaling (negligible
sequential overhead)

2Friday, March 18, 2011

An Observation

Runtime “fast-path” operations generally have few side
effects

Thus, safe for parallelism

3Friday, March 18, 2011

Slow-Path Barricading

Partition operations into 3 categories:
Safe (run in parallel)
Unsafe (runtime side effects)
A few others (a priori unsafe, but important)

Safety may be dependent on arguments

4Friday, March 18, 2011

Slow-Path Barricading

One runtime thread where everything is safe
Barricades active on all other threads:

Detect and intercept unsafe ops
Halt a thread until unsafe op can be completed by
runtime thread

Add primitives allowing programmer to explicitly
donate the runtime thread’s time to the barricaded
thread, allowing it to pass through and continue

5Friday, March 18, 2011

Racket Language Extension

future : (-> α) -> α future

touch : α future -> α

6Friday, March 18, 2011

(let ([f1 (future
(λ () (+ 1 2)))]

[f2 (future
(λ () (+ 3 4)))])

(+ (touch f1) (touch f2)))

Future f2Future f1Main thread
Time 1

Time 2

Time 5

Time 3

Time 4

spawn f1

spawn f2

touch f1

touch f2

+ 3 7

+ 1 2

+ 3 43

7

7Friday, March 18, 2011

(let ([f1 (future
 (λ ()
 (printf “Hello!\n”)
 (+ 1 2)))]

[f2 (future (λ () (+ 3 4)))])
(+ (touch f1) (touch f2)))

Future f2Future f1Main thread
Time 1
Time 2

Time 6
Time 5

Time 3
Time 4

spawn f1
spawn f2 printf
touch f1
printf

+ 1 2
touch f2

+ 3 4

7

3

8Friday, March 18, 2011

Racket Implementation

Racket runtime:
Substrate for the Racket language
100,000+ lines of C code
Simple, eager JIT compiler
Global data includes:

Execution state (exception handlers)
Symbol table
Macro expansion caches
GC metadata

9Friday, March 18, 2011

Racket Operations

Safe Unsafe Other
+ + allocation
/ / JIT compilation

unsafe-fl+ hash-set!
unsafe-fl/ printf

unsafe-vector-ref vector-ref
unsafe-vector-set! printf

call/cc
write
read

open-input-file
error

10Friday, March 18, 2011

Barricades in Racket

All code JIT compiled (if possible)

Fast-path ops - inlined

Slow-path ops - C functions

11Friday, March 18, 2011

“Other” Operations

We leverage Racket’s user-level thread infrastructure
for :

Allocation
JIT compilation

Racket threads: preemptive to programmers,
cooperative to runtime
Cooperation points allow for polling

12Friday, March 18, 2011

Garbage Collection

GC = special form of synchronized operation (stop
the world)

Cooperation points become barriers

13Friday, March 18, 2011

Slow-Path Barricading

Incremental
Seq. performance intuition
carries over
Low development investment
Good scaling (negligible
sequential overhead)

14Friday, March 18, 2011

Development Person-Hours (Racket)

Performed by non-expert (no prior knowledge) and
runtime developer

Expert Non-Expert (me) Total

41 536 577

15Friday, March 18, 2011

Parrot Implementation

Parrot runtime:
Register-based virtual machine
Pluggable runloop allows switching between
interpreters
Dynamic (virtual functions)

Each bytecode is checked prior to execution for
safety

Includes argument checking

16Friday, March 18, 2011

Development Person-Hours (Racket)

Performed by expert (active runtime
implementation contributor)

Expert Non-Expert Total

52 - 52

17Friday, March 18, 2011

Performance Evaluation

3 microbenchmarks
Signal convolution
Mergesort
Sparse matrix-vector multiplication

2 NAS Parallel Benchmarks kernels
Integer Sort
Fourier Transform

2 test machines:
8-core workstation (Mac OS X)
16-core mid-range server (Linux)

18Friday, March 18, 2011

Racket
8-core Mac

Racket
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier
Transform

4 2 2 2

8 6 - -

2 2 - -

6 Never - -

Never 4 - -

Scaling

Good Poor

Values = # of threads to
beat sequential impl.

19Friday, March 18, 2011

Racket
8-core Mac

Racket
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier
Transform

3 1 1 1

7 5 - -

1 1 - -

5 Never - -

Never 3 - -

Scaling

Good Poor

Thread count

Se
co

nd
s

1 2 3 4 5 6 7 8

1

2

3

4

5

6

gcc

Racket (0.3x)

Sequential C

Sequential Racket

Seconds

Thread Count

Signal Convolution
20Friday, March 18, 2011

Racket
8-core Mac

Racket
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier
Transform

3 1 1 1

7 5 - -

1 1 - -

5 Never - -

Never 3 - -

Scaling

Good Poor
Parallel Mergesort

Thread count

Se
co

nd
s

1 2 3 4 5 6 7 8 9 10111213141516

1

2

3

4

5

6

7

8

9

10

gcc

gcc parallel

Racket (0.6x)

Racket parallel (0.4x)

Sequential Racket

Parallel Racket
(1 thread)

Parallel C
Sequential C

Seconds

Thread Count

21Friday, March 18, 2011

Racket
8-core Mac

Racket
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier
Transform

3 1 1 1

7 5 - -

1 1 - -

5 Never - -

Never 3 - -

Scaling

Good Poor
NAS Fourier Transform

Thread count

Se
co

nd
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

Racket

Java
Parallel Java
(1 thread)

Parallel Racket
(1 thread)

Seconds

Thread Count

22Friday, March 18, 2011

Racket
8-core Mac

Racket
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier
Transform

3 1 1 1

7 5 - -

1 1 - -

5 Never - -

Never 3 - -

Scaling

Good PoorParrot Signal Convolution

Thread count

Se
co

nd
s

1 2 3 4 5 6 7 80

100

200

300

400

Sequential
Sequential Parrot

Seconds

Thread Count

23Friday, March 18, 2011

Slow-Path Barricading

Incremental
Seq. performance intuition
carries over
Low development investment
Good scaling (negligible
sequential overhead)

24Friday, March 18, 2011

Thanks!

Try parallel Racket today:
 http://racket-lang.org/download/

Try slow path barricading in your runtime system;
the main system developer should be able to add it
within a few weeks of work

25Friday, March 18, 2011

http://racket-lang.org/download/
http://racket-lang.org/download/

