James Swaine' Kevin Tew? Peter Dinda'
Robert Bruce Findler! Matthew Flatt?

'Northwestern University
2University of Utah

Friday, March 18, 2011 1

Slow-Path Barricading

~ Incremental

~ Seq. performance inturtion
carries over

~ Low development investment

~ Good scaling (negligible
sequential overhead)

Friday, March 18, 2011

An Observation

< Runtime “fast-path” operations generally have few side
effects

o Thus, safe for parallelism

Friday, March 18, 2011

Slow-Path Barricading

o Partition operations into 3 categories:
o Safe (run in parallel)
o Unsafe (runtime side effects)
o A few others (a priori unsafe, but important)

o Safety may be dependent on arguments

Friday, March 18, 2011

S& =" atn Barricad

ng

<~ One runtime thread where everything is safe
o Barricades active on all other threads:
o Detect and intercept unsafe ops
o Halt a thread until unsafe op can be completed by

runtime thread

o Add primrtives allowing programmer to explicitly

donate the runtime t
thread, allowing 1t to

nread’s time to the barricaded

pass through and continue

Friday, March 18, 2011

Racket Language bExtension

future

touch

(-> &) -> & future

X future -> &

Friday, March 18, 2011

et f]l (future

(A () (+12)))]
[£2 (future

(A () (+ 3 4)))1)
EENCEouch £1) (touch £29)9)

Main thread Future fl Future 2
IFREsA spawn f1l

ime 2 spawn f2 + 1 2
iEiEae 3 touch f1

Time 4 touch fZ“////ﬁ////

Time 5 + 3 7

Friday, March 18, 2011

e (£l (future

(A ()
(printf “Hello!\n"”)

(Gl 2]
[£2 (future (A () (+ 3 4)))])

(+ (touch fl1l) (touch f£2)))

Main thread Future fl Future 2

ime | spawn f1l

Time 2 spawn f2 (printf

Time 3 {%ouch fl\K 222 J[:+ 3 4
Time 4 T

Time 5 B - 1 >

Time 6 touch f2k////7///////

Friday, March 18, 2011

Racket Implementation

@ Racket runtime:

o Substrate for the Racket language

< 100,000+ lines of C code

o Simple, eager |IT compller

o Global data includes:
o Execution state (exception handlers)
o Symbol table
o Macro expansion caches
o GC metadata

Friday, March 18, 2011

Racket Operations

|
/

unsafe-fl+

unsafe-fl/
unsafe-vector-ref
unsafe-vector-set!

|

/
hash-set!
printf
vector-ref
printf
call/cc
write
read
open-input-file
error

allocation
JIT compilation

Friday, March 18, 2011

10

Barricades in Racket

o All code JIT compliled (if possible)
o Fast-path ops - inlined

o Slow-path ops - C functions

Friday, March 18, 2011

11

"Other’” Operations

o We leverage Racket's user-level thread infrastructure
for:
o Allocation
o JIT compllation
o Racket threads: preemptive to programmers,
cooperative to runtime
o Cooperation points allow for polling

Friday, March 18, 2011

12

Garbage Collection

o GC = special form of synchronized operation (stop
the world)

o Cooperation points become barriers

Friday, March 18, 2011

13

Slow-Path Barricading

™ Incremental

M Seq. performance inturtion
carries over

~ Low development investment

~ Good scaling (negligible
sequential overhead)

Friday, March 18, 2011 14

Development Person-Hours (Racket)

o Performed by non-expert (no prior knowledge) and
runtime developer

Expert Non-Expert (me) Total

2 536 SV

Friday, March 18, 2011

15

Parrot Implementation

o Parrot runtime:
o Register-based virtual machine
o Pluggable runloop allows switching between
interpreters
o Dynamic (virtual functions)
o FEach bytecode Is checked prior to execution for
safety
o Includes argument checking

Friday, March 18, 2011

16

Development Person-Hours (Racket)

o Performed by expert (active runtime
implementation contributor)

Expert Non-Expert Total

oY - o)/

Friday, March 18, 2011

17

Performance Evaluation

o 3 microbenchmarks
< Signal convolution
o Mergesort
o Sparse matrix-vector multiplication
o 2 NAS Parallel Benchmarks kernels
® |Integer Sort
o Fourier Transform
@ . test machines:
o 8-core workstation (Mac OS X)
o | 6-core mid-range server (Linux)

Friday, March 18, 2011

18

Racket Racket Parrot Parrot
8-core Mac | | 6-core Linux| 8-core Mac | |6-core Linux

Convolution 4 2 2

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier
Transform

Scalingg Values = # of threads to

S By beat sequential Impl.

Friday, March 18, 2011

‘

Racket (0.3 :
i Sequential Racket

Sequential C

gcc

®oq
@) ()
Thread Count

Thread count '
A\

Seconds Signal Convolution

Friday, March 18, 2011

20

Racket (0.6x)

gcc paralle

%0
""““‘

@ —— .
Seconds

Racket parallel (0.4x) l

Parallel Racket
(I thread)

Sequential Racket
Parallel C
Sequential C

Thread ount A T h re ad C ou I‘It

Parallel Mergesort

Friday, March 18, 2011

21

234567 8910111213141516

Thread count

Racket '

Parallel Racket
(I thread)

Parallel Java
(I thread)

Thread Count
-

Seconds

NAS Fourier Transform

Friday, March 18, 2011

22

Sequential

Sequential Parrot

Thread Count

Seconds

Parrot Signal Convolution

Friday, March 18, 2011

23

Slow-Path Barricading

™ Incremental

M Seq. performance inturtion
carries over

o [ow development investment

& Good scaling (negligible
sequential overhead)

Friday, March 18, 2011

24

Ih

anks!

Iry parallel Racket today:
http://racket-lang.org/download/

Try slow path barricading in your runtime system;
the main system developer should be able to add it
within a few weeks of work

Friday, March 18, 2011

25

http://racket-lang.org/download/
http://racket-lang.org/download/

