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Slow-Path Barricading

Incremental
Seq. performance intuition 
carries over
Low development investment
Good scaling (negligible 
sequential overhead)
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An Observation

Runtime “fast-path” operations generally have few side 
effects

Thus, safe for parallelism
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Slow-Path Barricading

Partition operations into 3 categories:
Safe (run in parallel)
Unsafe (runtime side effects)
A few others (a priori unsafe, but important)

Safety may be dependent on arguments
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Slow-Path Barricading

One runtime thread where everything is safe
Barricades active on all other threads:

Detect and intercept unsafe ops
Halt a thread until unsafe op can be completed by 
runtime thread 

Add primitives allowing programmer to explicitly 
donate the runtime thread’s time to the barricaded 
thread, allowing it to pass through and continue
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Racket Language Extension

future : (-> α) -> α future

touch  : α future -> α
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(let ([f1 (future 
(λ () (+ 1 2)))]

[f2 (future 
(λ () (+ 3 4)))]) 

(+ (touch f1) (touch f2)))

Future f2Future f1Main thread
Time 1

Time 2

Time 5

Time 3

Time 4

spawn f1

spawn f2

touch f1

touch f2

+ 3 7

+ 1 2

+ 3 43

7
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(let ([f1 (future 
           (λ ()
             (printf “Hello!\n”)
             (+ 1 2)))]

[f2 (future (λ () (+ 3 4)))]) 
(+ (touch f1) (touch f2)))

Future f2Future f1Main thread
Time 1
Time 2

Time 6
Time 5

Time 3
Time 4

spawn f1
spawn f2 printf
touch f1
printf

+ 1 2
touch f2

+ 3 4

7

3
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Racket Implementation

Racket runtime:
Substrate for the Racket language
100,000+ lines of C code
Simple, eager JIT compiler
Global data includes:

Execution state (exception handlers)
Symbol table
Macro expansion caches
GC metadata
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Racket Operations

Safe Unsafe Other
+ + allocation
/ / JIT compilation

unsafe-fl+ hash-set!
unsafe-fl/ printf

unsafe-vector-ref vector-ref
unsafe-vector-set! printf

call/cc
write
read

open-input-file
error
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Barricades in Racket

All code JIT compiled (if possible)

Fast-path ops - inlined

Slow-path ops - C functions
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“Other” Operations

We leverage Racket’s user-level thread infrastructure 
for :

Allocation
JIT compilation

Racket threads: preemptive to programmers, 
cooperative to runtime
Cooperation points allow for polling
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Garbage Collection

GC = special form of synchronized operation (stop 
the world)

Cooperation points become barriers
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Slow-Path Barricading

Incremental
Seq. performance intuition 
carries over
Low development investment
Good scaling (negligible 
sequential overhead)
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Development Person-Hours (Racket)

Performed by non-expert (no prior knowledge) and 
runtime developer

Expert Non-Expert (me) Total

41 536 577
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Parrot Implementation

Parrot runtime:
Register-based virtual machine
Pluggable runloop allows switching between 
interpreters
Dynamic (virtual functions)

Each bytecode is checked prior to execution for 
safety

Includes argument checking
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Development Person-Hours (Racket)

Performed by expert (active runtime 
implementation contributor)

Expert Non-Expert Total

52 - 52
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Performance Evaluation

3 microbenchmarks
Signal convolution
Mergesort
Sparse matrix-vector multiplication

2 NAS Parallel Benchmarks kernels
Integer Sort
Fourier Transform

2 test machines:
8-core workstation (Mac OS X)
16-core mid-range server (Linux)
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Racket
8-core Mac

Racket 
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier 
Transform

4 2 2 2

8 6 - -

2 2 - -

6 Never - -

Never 4 - -

Scaling

Good Poor

Values = # of threads to 
beat sequential impl.
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Racket
8-core Mac

Racket 
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier 
Transform

3 1 1 1

7 5 - -

1 1 - -

5 Never - -

Never 3 - -

Scaling

Good Poor
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Racket
8-core Mac

Racket 
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier 
Transform

3 1 1 1

7 5 - -

1 1 - -

5 Never - -

Never 3 - -

Scaling

Good Poor
Parallel Mergesort
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Racket
8-core Mac

Racket 
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier 
Transform

3 1 1 1

7 5 - -

1 1 - -

5 Never - -

Never 3 - -

Scaling

Good Poor
NAS Fourier Transform
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Racket
8-core Mac

Racket 
16-core Linux

Parrot
8-core Mac

Parrot
16-core Linux

Convolution

Mergesort

Mat-Vec Mult.

Integer Sort

Fourier 
Transform

3 1 1 1
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Never 3 - -

Scaling
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Slow-Path Barricading

Incremental
Seq. performance intuition 
carries over
Low development investment
Good scaling (negligible 
sequential overhead)

24Friday, March 18, 2011



Thanks!

Try parallel Racket today:
     http://racket-lang.org/download/

Try slow path barricading in your runtime system; 
the main system developer should be able to add it 
within a few weeks of work
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