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Overview

Motivation:
e Overlay-based virtual networks
e Bandwidth and latency limitations

e Core issues:
e Delayed and/or excessive virtual interrupts
e Copies between guest and host data buffers

Key optimizations:
e Optimistic timer-free virtual interrupt injection
e Zero-copy, cut-through data forwarding

Performance evaluation on 10Gbps Ethernet:
e Latency: reduced by 50%

e« Throughput: increased by > 30%

e Near-native application performance
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Motivations

e Virtual overlays are important for cloud systems
« Easy deployment/management
e Location/Hardware independence

e Evaluated performance of VNET/P overlay

e Performance limitations on faster networks
(e.g.,10Gbps Ethernet):
e Latency: 3 times higher than native
e Throughput: ~60% of native
e Large latency variation
e 30-40% HPCC application benchmark slowdown
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Linux Host + Palacios VMM + VNET/P
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Fig. 1. VNETI/P architecture.
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Performance Challenges

e Delayed virtual interrupts
e Excessive virtual interrupts

e High-resolution timer noise
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Delayed virtual interrupts
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Performance Challenges

 Excessive virtual interrupts

e High-resolution timer noise
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Optimization Overview

e Optimizations:
e Optimistic Interrupts
e Zero-copy cut-through data forwarding

e Leverage a low-noise host OS
e Assumption:
e One-to-one binding of host and virtual NIC

receive gueues
e Capability provided by modern NICs
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Optimization# 1.
Optimistic Interrupts

e Early Virtual Interrupt (EVI) delivery
 End of Coalescing (EoC) notification
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Early Virtual Interrupt (EVI) delivery

Three scenarios:

l.Virtual interrupts disabled:
e Discard by VMM
e Implicitly coalesced with a later interrupt

2.Guest handler runs prior to packet availability:
e Tgnores by guest
e Wasting guest OS CPU

3.Guest handler runs after packet availability:
e Not early enough
« Latency increases
« Extreme scenario: unoptimized VNET/P
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End of Coalescing (EoC) notification

e Problem:
e EVI delivery may fail
e Guest's processing may out-pace overlay's processing

e Solution: Raise interrupt when host receive queue empty
e Host device driver sends EoC to overlay
e Overlay injection based on:
e Previous EVI success/failure
e Shape of the traffic since last EVI

e Impact:
e Bound packet latency without high-resolution timers
e Additional benefit: avoid excessive virtual
interrupts
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Optimization#2:
Zero-copy cut-through data forwarding

e Goals:
e Increase interrupt efficiency
e Synchronize guest/overlay processing

e Approach:
Directly forward incoming/outgoing packets

between virtual NICs and host NICs

e Mechanism: DMA from host NIC to virtual NIC
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Noise isolation to reduce performance variation

e Approach: Reduce host OS timer noise

e Impacts:
e Reduces network performance variability
e Increases the effectiveness of optimistic
interrupts

e Implementation: Sandia Kitten lightweight kernel
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Testbed

e 6-node cluster: 8-core AMD Opteron CPU + 32GB RAM
NetEffect NE0O20 10Gbps Ethernet NIC

e Configuration:

Native Passthrough VNET/P VNET/P+
Busybox Busybox Busybox Busybox
Linux Linux Linux Linux
10 Gbps NIC Passthrough VirtlO NIC VirtlO NIC
=
Native 1 'VM VM VM
' VNET/P VNET/P+
F?alacios Palacios Palacios
- VMM VMM VMM
10'Gbps NIC 10 Gbps NIC 10 Gbps NIC
Kitten host Linux host Kitten host
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VNET/P+: Near—-native MPI P2P Bandwidth
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VNET/P+: Near-native MPI P2P Latency
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VNET/P+: Native HPCC MPI Application Performance
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VNET/P+: Near-native NAS Application Performance

Mop/s Native | Passthrough | VNET/P | VNET/P+ | “oEL101 (gp)
ep.B.8 102.18 102.17 102.12 102.12 99.9%
ep.B.16 208 207.96 206.25 207.93 99.9%
ep.C.8 103.13 102.76 102.14 103.08 99.9 %
ep.C.16 | 206.22 205.39 203.98 204.98 99.4%
mg.B.8 | 5110.29 4662.53 3796.03 | 4643.67 90.9%
mg.B.16 | 9137.26 8384.93 7405 8262.08 90.4 %
cg.B.8 | 2096.64 1824.05 1806.57 | 1811.14 86.4%
cg.B.16 | 592.08 592.05 554.91 592.07 99.9%
ft.B.8 | 2055.435 2055.4 1562.1 2055.3 99.9%
ft.B.16 1432.3 1432.2 1228.39 | 1432.18 99.9%
is.B.8 59.15 59.14 59.04 59.13 99.9%
is.B.16 23.09 23.05 23 23.04 99.8 %
is.C.8 132.08 132 131.87 132.04 99.9 %
is.C.16 77.77 77.12 76.94 77.1 99.9 %
lu.B.8 7173.65 6730.23 6021.78 | 6837.06 95.3%
luB.16 | 12981.86 | 11630.65 | 964321 | 12198.65 94 %
sp.B.9 | 2634.53 2634.5 2421.98 2634.5 99.9%
sp.B.16 | 3010.71 3009.5 2916.81 | 2954.16 98.1%
bt.B.9 5229.01 4750.4 4076.52 | 4798.63 91.8%
bt.B.16 | 6315.11 6314.1 6105.11 | 6242.83 999%
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Conclusion

e Virtual Overlay networks can achieve near-native MPI
application performance

e Challenges in virtual overlay networks:
e Delayed virtual interrupts
e Excessive virtual interrupts
e High-resolution timer noise

e Optimization approaches:
e Optimistic interrupts
e Cut-through forwarding

e Optimization efficiency:
e Latency: reduced by 50%
e Throughput: increased by > 30%,
e Reduced bandwidth/latency variability
e Near-native performances

11/08/12

19



Acknowledgement

e DOE Office of Science Advanced Scientific
Computing Research award DE-SC0005050

e NSF grants CNS-0707365

e Scalable System Lab in University of New
Mexico

11/08/12

20



11/08/12

Contact Information

Zheng Cul
Department of Computer Science
MSCO01 1130
University of New Mexico
Albuquerque, 87131

Email: cuizheng@cs.unm.edu
zcul293@gmail.com

http://cs.unm.edu/~cuizheng

21


mailto:cuizheng@cs.unm.edu
mailto:zcui293@gmail.com

11/08/12

Questions?
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