Optimizing Overlay-based Virtual Networking Through Optimistic Interrupts and Cut-through Forwarding

Zheng Cui[†]
Lei Xia[‡]
Patrick Bridges[†]
Peter Dinda[‡]
Jack Lange^{*}

†University of New Mexico

†Northwestern University

†University of New Mexico

†Northwestern University

*University of Pittsburgh

http://v3vee.org

Overview

• Motivation:

- Overlay-based virtual networks
- Bandwidth and latency limitations

• Core issues:

- Delayed and/or excessive virtual interrupts
- Copies between guest and host data buffers

Key optimizations:

- Optimistic timer-free virtual interrupt injection
- Zero-copy, cut-through data forwarding

• Performance evaluation on 10Gbps Ethernet:

- Latency: reduced by 50%
- Throughput: increased by > 30%
- Near-native application performance

Motivations

- Virtual overlays are important for cloud systems
 - Easy deployment/management
 - Location/Hardware independence
- Evaluated performance of VNET/P overlay
- Performance limitations on faster networks (e.g., 10Gbps Ethernet):
 - Latency: 3 times higher than native
 - Throughput: ~60% of native
 - Large latency variation
 - 30-40% HPCC application benchmark slowdown

<u>Linux Host + Palacios VMM + VNET/P</u>

• Palacios VMM

- OS-independent embeddable virtual machine monitor
- Open source
- Host OS: Linux, Kitten, Minix ...

• VNET/P

- Layer 2 virtual overlay network for user's virtual machines
- Virtual NIC for each guest OS
- VNET core
- VNET bridge

Fig. 1. VNET/P architecture.

Performance Challenges

• Delayed virtual interrupts

• Excessive virtual interrupts

• High-resolution timer noise

Delayed virtual interrupts

Fig.2 Packet Processing Time Line

Performance Challenges

• Delayed virtual interrupts

• Excessive virtual interrupts

• High-resolution timer noise

Optimization Overview

• Optimizations:

- Optimistic Interrupts
- Zero-copy cut-through data forwarding
- Leverage a low-noise host OS
- Assumption:
 - One-to-one binding of host and virtual NIC receive queues
 - Capability provided by modern NICs

Optimization# 1: Optimistic Interrupts

- Early Virtual Interrupt (EVI) delivery
- End of Coalescing (EoC) notification

Early Virtual Interrupt (EVI) delivery

Three scenarios:

1. Virtual interrupts disabled:

- Discard by VMM
- Implicitly coalesced with a later interrupt

2. Guest handler runs prior to packet availability:

- Ignores by guest
- Wasting guest OS CPU

3. Guest handler runs after packet availability:

- Not early enough
- Latency increases
- Extreme scenario: unoptimized VNET/P

End of Coalescing (EoC) notification

• Problem:

- EVI delivery may fail
- Guest's processing may out-pace overlay's processing
- Solution: Raise interrupt when host receive queue empty
 - Host device driver sends EoC to overlay
 - Overlay injection based on:
 - Previous EVI success/failure
 - Shape of the traffic since last EVI

• Impact:

- Bound packet latency without high-resolution timers
- Additional benefit: avoid excessive virtual interrupts

Optimization#2:

Zero-copy cut-through data forwarding

• Goals:

- Increase interrupt efficiency
- Synchronize guest/overlay processing

· Approach:

Directly forward incoming/outgoing packets between virtual NICs and host NICs

• Mechanism: DMA from host NIC to virtual NIC

Noise isolation to reduce performance variation

• Approach: Reduce host OS timer noise

• Impacts:

- Reduces network performance variability
- Increases the effectiveness of optimistic interrupts

• Implementation: Sandia Kitten lightweight kernel

Testbed

• 6-node cluster: 8-core AMD Opteron CPU + 32GB RAM + NetEffect NE020 10Gbps Ethernet NIC

• Configuration:

VNET/P+: Near-native MPI P2P Bandwidth

VNET/P+: Near-native MPI P2P Latency

IMB Small Pkts Pingpong

VNET/P+: Native HPCC MPI Application Performance

VNET/P+: Near-native NAS Application Performance

Mop/s	Native	Passthrough	VNET/P	VNET/P+	$rac{VNET/P+}{Native}$ (%)
ep.B.8	102.18	102.17	102.12	102.12	99.9%
ep.B.16	208	207.96	206.25	207.93	99.9%
ep.C.8	103.13	102.76	102.14	103.08	99.9%
ep.C.16	206.22	205.39	203.98	204.98	99.4%
mg.B.8	5110.29	4662.53	3796.03	4643.67	90.9%
mg.B.16	9137.26	8384.93	7405	8262.08	90.4%
cg.B.8	2096.64	1824.05	1806.57	1811.14	86.4%
cg.B.16	592.08	592.05	554.91	592.07	99.9%
ft.B.8	2055.435	2055.4	1562.1	2055.3	99.9%
ft.B.16	1432.3	1432.2	1228.39	1432.18	99.9%
is.B.8	59.15	59.14	59.04	59.13	99.9%
is.B.16	23.09	23.05	23	23.04	99.8%
is.C.8	132.08	132	131.87	132.04	99.9%
is.C.16	77.77	77.12	76.94	77.1	99.9%
lu.B.8	7173.65	6730.23	6021.78	6837.06	95.3%
lu.B.16	12981.86	11630.65	9643.21	12198.65	94%
sp.B.9	2634.53	2634.5	2421.98	2634.5	99.9%
sp.B.16	3010.71	3009.5	2916.81	2954.16	98.1%
bt.B.9	5229.01	4750.4	4076.52	4798.63	91.8%
bt.B.16	6315.11	6314.1	6105.11	6242.83	99%

Conclusion

- Virtual Overlay networks can achieve near-native MPI application performance
- Challenges in virtual overlay networks:
 - Delayed virtual interrupts
 - Excessive virtual interrupts
 - High-resolution timer noise
- Optimization approaches:
 - Optimistic interrupts
 - Cut-through forwarding
- Optimization efficiency:
 - Latency: reduced by 50%
 - Throughput: increased by > 30%,
 - Reduced bandwidth/latency variability
 - Near-native performances

Acknowledgement

• DOE Office of Science Advanced Scientific Computing Research award DE-SC0005050

• NSF grants CNS-0707365

• Scalable System Lab in University of New Mexico

Contact Information

Zheng Cui
Department of Computer Science
MSC01 1130
University of New Mexico
Albuquerque, 87131

Email: cuizheng@cs.unm.edu zcui293@gmail.com

http://cs.unm.edu/~cuizheng

Questions?